首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1230篇
  免费   63篇
  国内免费   8篇
电工技术   17篇
综合类   1篇
化学工业   444篇
金属工艺   34篇
机械仪表   40篇
建筑科学   26篇
矿业工程   2篇
能源动力   60篇
轻工业   78篇
水利工程   10篇
石油天然气   13篇
无线电   140篇
一般工业技术   196篇
冶金工业   71篇
原子能技术   7篇
自动化技术   162篇
  2023年   17篇
  2022年   36篇
  2021年   57篇
  2020年   33篇
  2019年   33篇
  2018年   65篇
  2017年   53篇
  2016年   50篇
  2015年   36篇
  2014年   51篇
  2013年   90篇
  2012年   69篇
  2011年   59篇
  2010年   61篇
  2009年   55篇
  2008年   44篇
  2007年   35篇
  2006年   25篇
  2005年   28篇
  2004年   20篇
  2003年   21篇
  2002年   27篇
  2001年   13篇
  2000年   11篇
  1999年   18篇
  1998年   29篇
  1997年   16篇
  1996年   18篇
  1995年   11篇
  1994年   7篇
  1993年   18篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   15篇
  1988年   7篇
  1987年   9篇
  1986年   14篇
  1985年   9篇
  1984年   15篇
  1983年   9篇
  1982年   12篇
  1981年   10篇
  1980年   14篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1972年   4篇
排序方式: 共有1301条查询结果,搜索用时 46 毫秒
151.
This study embodies experimental characterization of emitted particulate and filtration performance under varied situation in a pulse-jet cleaning process. Tests were conducted under simulated condition in a filtration apparatus consisting four bags. The effect of four different factors such as fabric punch density, baffle plate height, air to cloth ratio and cycle time have been investigated on the key parameters; emission, pressure drop along with PM2.5 and average particle diameter of emitted particulate matter in a pulse-jet filtration process. Experimental investigation based on L9-orthogonal design shows that emission is reduced with the increases in punch density and pulse cycle time; but it increases up to a certain extent with the increase in air to cloth ratio. However baffle plate height has no effect on the emission. On the other hand pressure drop across the tube sheet increases with the material consolidation, air to cloth ratio and pulse cycle time; but the above parameter first decrease with the increase in baffle plate height. PM2.5 (based on the number distribution) is found to be mainly affected by the baffle plate height and cycle time; as it first increases and then decrease with the increase in baffle plate height but it shows reverse trend with the increase in cycle time. Average particle diameter based on number volume is found to be mainly affected by the baffle plate height and cycle time. With the increase in time of filtration, both emission and pressure drop tend to increase without affecting PM2.5 and average particle diameter based on number volume.  相似文献   
152.
153.
A polymer nanocomposite was produced by acrylonitrile‐butadiene‐styrene (ABS) and α‐alumina was prepared through sol‐gel process using aluminum nitrate and citric acid. The particle size was analyzed by X‐ray diffraction and scanning electron microscopy (SEM) studies. The nanocomposites were characterized through tensile strength, Young's modulus, strain% at break, flexural strength, flexural modulus, and impact strength. The ABS/Al2O3 nanocomposites are found to have slightly higher Young's modulus, but lower tensile strength, strain% at break, flexural and impact strength than the virgin ABS. But its flexural modulus increases with increasing Al2O3 content in ABS matrix. The d‐spacing was calculated in nanocomposites to evaluate the interaction between Al2O3 and ABS. The particle distributions in nanocomposites were studied by SEM. The fractured surfaces of tensile test samples were also examined through SEM and show that the ductile fracture of ABS is converted to brittle fracture with addition of Al2O3. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
154.
Stress‐relaxation behavior of glass fiber‐reinforced polyester composites, prepared by a recently developed manufacturing method called rubber pressure molding (RPM), is investigated with special reference to the effect of environmental temperature (−70°C to +100°C), fiber volume fraction (30–60%), and initial load level (1–5 kN). It is found that the stress‐relaxation rate decreases with an increase in the applied load of composites and a decrease in temperature. Below glass transition temperature, the rate of stress relaxation increases with an increase in volume fraction of fibers in the composites, whereas above glass transition temperature, it increases with a decrease in the volume fraction of fibers. The experimental results for a given composites are summarized by four values, the slopes of the two straight lines (two separate relaxation processes), and their intercepts upon the stress axis. Both the slopes are dependent upon the applied load, temperature, and volume fraction of fibers in the composites. Relaxation times in both primary and secondary are calculated over the wide range of temperatures, loads, and volume fraction of fibers in the composites. It depends strongly on the temperature, but does not depend strongly on the applied load and volume fraction of fibers. The performances of the composites are also evaluated through conventional compression‐molding process. The rate of stress relaxation is small when the composites are made of newly proposed RPM technique when compared with the conventional process. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
155.
Substantial efforts are underway to improve the recovery factor from existing oil reserves to meet the ever-growing global oil demand. Surfactants are known to increase oil recovery through reducing interfacial tension (IFT) and/or altering the rock wettability. The selection of surfactants for high-salinity high-temperature oil fields is a challenging task owing to poor thermal stability, precipitation, and adsorption of surfactants on reservoir rocks. Sulfobetaine-based polyoxyethylene zwitterionic surfactants have shown excellent thermal and surface properties. However, their solubility in high-salinity brines becomes poor particularly with a long hydrophobic tail (>C17). Recently, we synthesized such types of surfactants by incorporating ethylene oxide (EO) units into the hydrophobic tail, which improved the solubility in formation water (213,734 ppm) and seawater (SW) (57,643 ppm). In this work, we investigated the IFT, thermal stability, rheological behavior, and foaming properties of two polyoxyethylene zwitterionic surfactants having different degrees of ethoxylation. Aging experiments exhibited excellent thermal stability and no change in the chemical structure was detected. The surfactant with lesser EO units (EASB-1a) showed a lower IFT compared to the surfactant with higher EO units (EASB-1b). Rheological studies revealed that the addition of both surfactants reduced the viscosity of the acrylamide copolymer. However, the effect of EASB-1a was more prominent compared to that of EASB-1b. The surfactant with a higher degree of ethoxylation showed lower adsorption compared to the surfactant with a lesser degree of ethoxylation. Both surfactants showed excellent foamability and foam stability compared to the commercial surfactants. Excellent thermal stability, water solubility under harsh reservoir conditions, foaming properties, and lower adsorption make them a suitable choice for high-temperature, high-salinity reservoirs.  相似文献   
156.
Chemical biology and drug discovery are instrumental sciences to address unmet medical needs and to gain a deeper understanding of normal and disease state biology in mammalian systems. Unlike most genetic tools, the small molecule modulation of biology is reversible, controllable in space, time and quantity, avoids the removal of gene products from cellular systems and thus enables perturbation of biology in its native state. Natural products, their derivatives as well as small molecules based on the core‐scaffolds of natural products including natural product fragments allow targeting unique, biologically relevant fractions of chemical space that may deliver quality tool compounds. In this essay, we discuss various synthesis approaches inspired by natural products to deliver biologically active small molecules. We argue and provide evidence that inspiration by natural product structure remains a powerful guiding principle for the development of novel approaches to the study biology by means of novel bioactive small molecules.  相似文献   
157.
Protein existence in wastewater is an important issue in wastewater management because proteins are generally present as contaminants and foulants. Hence, in this study, we focused on designing a polysulfone (PSf) hollow-fiber membrane embedded with hydrophilic iron oxide nanoparticles (IONPs) for protein purification by means of ultrafiltration. Before membrane fabrication, the dispersion stability of the IONPs was enhanced by the addition of a stabilizer, namely, citric acid (CA). Next, PSf–IONP–CA nanocomposite hollow-fiber membranes were prepared via a dry–wet spinning process and then characterized in terms of their hydrophilicity and morphology. Ultrafiltration and adsorption experiments were then conducted with bovine serum albumin as a model protein. The results that an IONP/CA weight ratio of 1:20 contributed to the most stable IONP dispersion. It was also revealed that the membrane incorporated with IONP–CA at a weight ratio of 1:20 exhibited the highest pure water permeability (58.6 L m−2 h−1 bar−1) and protein rejection (98.5%) while maintaining a low protein adsorption (3.3 μg/cm2). The addition of well-dispersed IONPs enhanced the separation features of the PSf hollow-fiber membrane for protein purification. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47502.  相似文献   
158.
This article presents a hands‐off control design for discrete‐time nonlinear system with a special type of nonlinear sector termed as “discrete‐time sector.” The design method to define the boundary of a discrete‐time sector is done with control‐Lyapunov function. The generalization of nonlinear system is viewed in the perspective of a comparison function. By means of a proposed sector, a switching control is designed such that no control action is experienced inside the sector thus, saving unnecessary control efforts. However, to study the robustness for discrete‐time system, a hands‐off control is modified to ensure the monotonic decrease in the energy of the system. Finally, the proposed approach is verified with the simulation results.  相似文献   
159.
160.
Rare-earth orthoferrites (RFeO3) are well-known for the antiferromagnetic ground state. However, some of the recent experimental results suggest that the few members of RFeO3 family possess ferromagnetism. In the present investigation we report the possible origin of ferromagnetism in antiferromagnetic YFeO3 using density functional theory. For this purpose, we have considered pure as well as self-doping in YFeO3 i.e. by considering the point defect at Y, Fe and O sites. Our finding suggests that the point defects in YFeO3 results in the mixed-valence state of Fe, which may result in ferromagnetism through Zener double exchange mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号