首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   19篇
综合类   4篇
化学工业   32篇
金属工艺   6篇
机械仪表   11篇
建筑科学   9篇
能源动力   10篇
轻工业   2篇
水利工程   6篇
无线电   23篇
一般工业技术   48篇
冶金工业   5篇
自动化技术   25篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   15篇
  2020年   11篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   13篇
  2011年   20篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
21.
22.
23.
Development of the dielectrophoretic (DEP) live cell trapping technology and its interfacing with the environmental scanning electron microscopy (ESEM) is described. DEP microelectrode arrays were fabricated on glass substrate using photolithography and lift-off. Chip-based arrays were applied for ESEM analysis of DEP-trapped human leukemic cells. This work provides proof-of-concept interfacing of the DEP cell retention and trapping technology with ESEM to provide a high-resolution analysis of individual nonadherent cells.  相似文献   
24.
Quantification of programmed and accidental cell death provides useful end-points for the anticancer drug efficacy assessment. Cell death is, however, a stochastic process. Therefore, the opportunity to dynamically quantify individual cellular states is advantageous over the commonly employed static, end-point assays. In this work, we describe the development and application of a microfabricated, dielectrophoretic (DEP) cell immobilization platform for the real-time analysis of cancer drug-induced cytotoxicity. Microelectrode arrays were designed to generate weak electro-thermal vortices that support efficient drug mixing and rapid cell immobilization at the delta-shape regions of strong electric field formed between the opposite microelectrodes. We applied this technology to the dynamic analysis of hematopoietic tumor cells that represent a particular challenge for real-time imaging due to their dislodgement during image acquisition. The present study was designed to provide a comprehensive mechanistic rationale for accelerated cell-based assays on DEP chips using real-time labeling with cell permeability markers. In this context, we provide data on the complex behavior of viable vs dying cells in the DEP fields and probe the effects of DEP fields upon cell responses to anticancer drugs and overall bioassay performance. Results indicate that simple DEP cell immobilization technology can be readily applied for the dynamic analysis of investigational drugs in hematopoietic cancer cells. This ability is of particular importance in studying the outcome of patient derived cancer cells, when exposed to therapeutic drugs, as these cells are often rare and difficult to collect, purify and immobilize.  相似文献   
25.
This paper presents a new approach to rotation invariant texture classification. The proposed approach benefits from the fact that most of the texture patterns either have directionality (anisotropic textures) or are not with a specific direction (isotropic textures). The wavelet energy features of the directional textures change significantly when the image is rotated. However, for the isotropic images, the wavelet features are not sensitive to rotation. Therefore, for the directional textures, it is essential to calculate the wavelet features along a specific direction. In the proposed approach, the Radon transform is first employed to detect the principal direction of the texture. Then, the texture is rotated to place its principal direction at 0 degrees. A wavelet transform is applied to the rotated image to extract texture features. This approach provides a features space with small intraclass variability and, therefore, good separation between different classes. The performance of the method is evaluated using three texture sets. Experimental results show the superiority of the proposed approach compared with some existing methods.  相似文献   
26.
27.

In this paper, we propose an efficient cascaded model for sign language recognition taking benefit from spatio-temporal hand-based information using deep learning approaches, especially Single Shot Detector (SSD), Convolutional Neural Network (CNN), and Long Short Term Memory (LSTM), from videos. Our simple yet efficient and accurate model includes two main parts: hand detection and sign recognition. Three types of spatial features, including hand features, Extra Spatial Hand Relation (ESHR) features, and Hand Pose (HP) features, have been fused in the model to feed to LSTM for temporal features extraction. We train SSD model for hand detection using some videos collected from five online sign dictionaries. Our model is evaluated on our proposed dataset (Rastgoo et al., Expert Syst Appl 150: 113336, 2020), including 10’000 sign videos for 100 Persian sign using 10 contributors in 10 different backgrounds, and isoGD dataset. Using the 5-fold cross-validation method, our model outperforms state-of-the-art alternatives in sign language recognition

  相似文献   
28.
This article presents Ni–Cu–Fe–Al alloy as a novel inert anode used in FFC process (the Fray Farthing Chen) in molten calcium chloride salts for producing titanium. The alloy was prepared by vacuum induction melting; then utilized as anode material in molten CaCl2 for 16 h at 900 °C. Morphology and the corrosion behavior of the samples were analyzed using scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The product on the cathode was analyzed using X-ray diffraction (XRD). After 16 h electrolysis of anodes, EDS and SEM analysis of the samples showed that the corrosion depth of the non-oxidized sample was shorter. Corrosion attacks more severe for the pre-oxidized sample than the non-oxidized sample, which indicated that the corrosion resistance of outer layer is higher on the non-oxidized sample. The XRD results show that the TiO2 pellets were successfully reduced to the lower oxides using the Ni–Cu–Fe–Al inert anode.  相似文献   
29.
As an alternative to the energy-intensive evaporation-crystallization method, membrane distillation crystallization (MDC) was applied for the first time to obtain calcium nitrate crystals from its aqueous solution. Calcium nitrate solution was obtained through the reaction between calcium carbonate and nitric acid, and then it was concentrated in the membrane distillation (MD) process and further crystallized. The MD step was conducted using hydrophobic polyvinylidene fluoride (PVDF)/sorbitan trioleate (Span 85) membranes. Span 85 was incorporated into the membrane structure in various concentrations to improve the hydrophobicity of membranes, and the resultant membranes were characterized via different methods. In addition, the resultant calcium nitrate crystals were characterized by X-ray fluorescence (XRF) spectroscopy. The MDC results showed that the optimum amount of Span 85 in the polymeric solution was 4%, which led to the formation of a membrane with higher porosity (67.2%) and water contact angle (95.7°) compared to the neat PVDF membrane. The mentioned membrane exhibited the highest water flux in the MD process compared to the other membranes, and also it produced the highest amount of crystals due to its remarkably better performance in the MD step in terms of feed concentration.  相似文献   
30.
Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280–850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W−1) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号