首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   20篇
电工技术   2篇
化学工业   124篇
金属工艺   22篇
机械仪表   17篇
建筑科学   7篇
矿业工程   2篇
能源动力   10篇
轻工业   6篇
水利工程   2篇
无线电   41篇
一般工业技术   76篇
冶金工业   3篇
原子能技术   4篇
自动化技术   92篇
  2023年   3篇
  2022年   11篇
  2021年   24篇
  2020年   5篇
  2019年   11篇
  2018年   17篇
  2017年   13篇
  2016年   21篇
  2015年   16篇
  2014年   25篇
  2013年   35篇
  2012年   25篇
  2011年   42篇
  2010年   21篇
  2009年   32篇
  2008年   20篇
  2007年   17篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
101.
New pyrazole derivatives were designed and synthesized as potential protein kinase inhibitors in the view to develop specific antitumor therapies. The structures of the compounds were elucidated using spectral and elemental analyses. The antitumor potential was estimated using wheat seeds and the general toxicity was evaluated by alternative methods, using invertebrate animals. One 3-aminopyrazole derivative emerged as a potential candidate for the development of future cytotoxic compounds.  相似文献   
102.
A program was conducted to research how to characterize the size and shape of micro-particles. These can act as graphite nuclei, but are altered by adding a commercial iron powder, or after a similar treatment combined with inoculation. Resin sand mold (RSM) and metal mold (MM) solidified sample structures were subjected to automatic image analysis. In general, a higher cooling rate, typical for MM solidification, favors smaller size and more compact particles, even in RSM media. Iron powder treatment led to the largest particles with unusual morphologies, better defined by complex shape factors, which employ actual perimeters, rather than the simpler median size and aspect ratio method. Conventional inoculation employed after an iron powder treatment altered the particles (smaller and more compact), which benefited their effectiveness to act as graphite nuclei, especially at slower solidification rates in RSMs. The results confirm that promoting more compact micro-inclusions, at smaller sizes, involved in graphite nucleation, reduces the sensitivity to chill and improves the eutectic cell characteristics in gray cast iron.  相似文献   
103.
The effects of an organic additive, polyoxyethylene sorbitan trioleate (Tween 85), on the induction time for the precipitation of calcium carbonate are experimentally and theoretically investigated. Calcium carbonate was precipitated from aqueous solutions of K2CO3 and Ca(NO)3 at moderate supersaturations ranging between 5 and 16 with and without the organic additive. Experimentally it has been noticed that the induction period for CaCO3 precipitation increases at low supersaturation and is also influenced by temperature. An increase of the induction time was noticed when Tween 85 was added in the system. The “cluster coagulation model” proposed by Qian and Botsaris (1997), which combines nucleation models and coagulation theory, was used to explain the effects of operating parameters on the induction time in terms of interfacial energy and cluster sizes.  相似文献   
104.
Prosthetic medical device-associated infections are responsible for significant morbidity and mortality rates. Novel improved materials and surfaces exhibiting inappropriate conditions for microbial development are urgently required in the medical environment. This study reveals the benefit of using natural Mentha piperita essential oil, combined with a 5 nm core/shell nanosystem-improved surface exhibiting anti-adherence and antibiofilm properties. This strategy reveals a dual role of the nano-oil system; on one hand, inhibiting bacterial adherence and, on the other hand, exhibiting bactericidal effect, the core/shell nanosystem is acting as a controlled releasing machine for the essential oil. Our results demonstrate that this dual nanobiosystem is very efficient also for inhibiting biofilm formation, being a good candidate for the design of novel material surfaces used for prosthetic devices.  相似文献   
105.
Emerging wireless applications consistently demand higher data rates. Unfortunately, it is challenging to achieve high data rates within the limited amount of available frequency spectrum. Hence, enhanced spectral efficiency and link reliability within the available frequency spectrum are of the utmost importance in current and next generation wireless protocols. To attain high spectral efficiency and link reliability, wireless protocols employ increasingly complex 2-dimensional techniques that involve computationally-intensive matrix operations. Multiple-Input Multiple-Output (MIMO) communication is an example of a promising technique employed by wireless protocols to deliver higher data rates at the cost of increased algorithmic complexity. Application Specific Integrated Circuits (ASICs) have traditionally been used to implement compute-intensive wireless protocols. The wireless industry has been gradually moving towards an alternative programmable platform called Software Defined Radio (SDR) due to its significant benefits, such as reduced development costs, and accelerated time-to-market. The computationally-intensive matrix operations used in current and next generation wireless protocols are extremely expensive to implement in SDR platforms with conventional Digital Signal Processor (DSP) instruction sets. Hence there is a need for novel instructions, hardware designs and algorithm enhancements to enable higher spectral efficiency on SDR platforms. In this paper, we propose Single Instruction Multiple Data (SIMD) CoOrdinate Rotation DIgital Computer (CORDIC) instruction set extensions with CORDIC hardware support to speedup computationally-intensive matrix decomposition algorithms. The CORDIC instruction set extensions have been implemented on the Sandbridge Sandblaster SB3000 SDR platform and evaluated on conventional algorithms used for decomposing a closed loop 4-by-4 Worldwide Interoperability for Microwave Access (WiMAX) MIMO channel into independent Single-Input Single-Output (SISO) channels. Our experimental results on the closed-loop MIMO channel decomposition using CORDIC instructions demonstrate more than 6x speedup over a Sandblaster baseline implementation that uses state-of-the-art SIMD DSP instructions. The CORDIC instructions also provide similar numerical accuracy when compared to the baseline implementation. The techniques we propose in this paper are also applicable to other SDR and embedded processor architectures.  相似文献   
106.
107.
This article aims to identify the appropriate sampling duration for a tribocharging process on a vibratory feeder device in order to compute the capability indexes and set up a statistical control procedure. The outcome of the process is evaluated as the ratio between the charge and the mass of the granules that exit the tribocharging device during a given laps of time. A virtual instrument developed in LabWiew was used in conjunction with a Faraday cage connected to an electrometer and with an electronic scale, to simultaneously measure the charge and the mass of tribocharged granular plastics, for fixed sampling durations.  相似文献   
108.
In this study, the effect of macromolecular chain‐branching on poly(lactic acid) (PLA) rheology, crystallization, and extrusion foaming was investigated. Two PLA grades, an amorphous and a semi‐crystalline one, were branched using a multifunctional styrene‐acrylic‐epoxy copolymer. The branching of PLA and its foaming were achieved in one‐step extrusion process. Carbon dioxide (CO2), in concentration up to 9%, was used as expansion agent to obtain foams from the two PLA branched using chain‐extender contents up to 2%. The foams were investigated with respect to their shear and elongational behavior, crystallinity, morphology, and density. The addition of the chain‐extender led to an increase in complex viscosity, elasticity, elongational viscosity, and in the manifestation of the strain‐hardening phenomena. Low‐density foams were obtained at 5–9% CO2 for semi‐crystalline PLA and only at 9% CO2 in the case of the amorphous PLA. Differences in foaming behavior were attributed to crystallites formation during the foaming process. The rheological and structural changes associated with PLA chain‐extension lowered the achieved crystallinity but slightly improved the foamability at low CO2 content. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   
109.
Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal (PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths. However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.  相似文献   
110.
This article investigates the crystallinity development in cellular poly(lactic acid) (PLA) and the effect of the achieved crystalline content on its properties and microstructure. Carbon dioxide (CO2) in its supercritical state was used as the expansion agent for three different grades of PLA that differed in terms of L‐lactic acid content. Cellular PLA was produced on a twin‐screw extrusion line using capillary dies of various diameters. The obtained crystalline contents were measured by differential scanning calorimetry and X‐ray diffraction techniques. The morphology of the cellular structures was examined using scanning electron microscopy. The crystallinity developed on expansion depended on L‐lactic acid content, on supercritical CO2 concentration, polymer flow rate, and die diameter. Cellular PLA, with densities as low as 30 kg/m3, was obtained under the most favorable conditions. It was shown that the crystallinity development in PLA enhances its cellular structure formation and enables the fabrication of quality cellular materials at lower CO2 concentration. The presence of PLA crystallites within expanded cell walls leads to a peculiar 2D‐cavitation phenomena observed only in the cell walls of semicrystalline foams. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号