首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3001篇
  免费   105篇
  国内免费   18篇
电工技术   55篇
综合类   16篇
化学工业   657篇
金属工艺   46篇
机械仪表   66篇
建筑科学   45篇
矿业工程   3篇
能源动力   139篇
轻工业   279篇
水利工程   18篇
石油天然气   14篇
无线电   317篇
一般工业技术   599篇
冶金工业   465篇
原子能技术   25篇
自动化技术   380篇
  2023年   29篇
  2022年   57篇
  2021年   114篇
  2020年   74篇
  2019年   77篇
  2018年   94篇
  2017年   81篇
  2016年   98篇
  2015年   52篇
  2014年   94篇
  2013年   166篇
  2012年   126篇
  2011年   153篇
  2010年   117篇
  2009年   100篇
  2008年   117篇
  2007年   113篇
  2006年   95篇
  2005年   89篇
  2004年   59篇
  2003年   56篇
  2002年   48篇
  2001年   28篇
  2000年   42篇
  1999年   39篇
  1998年   162篇
  1997年   104篇
  1996年   89篇
  1995年   57篇
  1994年   63篇
  1993年   54篇
  1992年   38篇
  1991年   33篇
  1990年   23篇
  1989年   25篇
  1988年   25篇
  1987年   16篇
  1986年   21篇
  1985年   26篇
  1984年   32篇
  1983年   14篇
  1982年   20篇
  1981年   19篇
  1980年   19篇
  1978年   18篇
  1977年   17篇
  1976年   31篇
  1975年   15篇
  1974年   20篇
  1972年   13篇
排序方式: 共有3124条查询结果,搜索用时 343 毫秒
131.
It is usual to observe that multi-scale structures can lead to combined strength and ductility both in aluminum alloys and steels, but related research has been seldom reported yet in magnesium alloys. In this study, applying traditional one step extrusion, we have successfully obtained a bimodal (Mg-9Gd-4Y-0.5Zr) alloy capable of ultra-high strength. The characterized sample reveal a bi-modal microstructure with two constitutions, i.e. stretched coarse-grain region with strong basal fiber texture and recrystallization fine-grain region. The bi-modal structured sample exhibit excellent mechanical properties with an ultimate strength 508 MPa and elongation 8% via 400 °C extrusion and subsequently 200 °C-60 h peak aging process. Ultra-high strength can be attributed to its strong extrusion texture in stretched coarse grains and dispersed nano-scale precipitates. This unique bimodal structure could be produced easily by one step extrusion, which is quite reliable and low costs in industrial applications of magnesium alloys with ultra-high strength as well as ideal ductility.  相似文献   
132.

Eutectic high entropy alloy with seven components is designed based on the integrated computational materials engineering (ICME) framework. The framework includes thermodynamic prediction using calculation of phase diagrams (CALPHAD), microstructure simulation using phase-field method, and experimental validation. The designed alloy shows the eutectic structure consisting of FCC and laves phase in the composition range from 8.25 to 10 at. pct Ta. The simulation and experimental results are co-related and a framework is proposed that can be used for high entropy alloy design subjected to various manufacturing processes.

  相似文献   
133.
134.
Nanostructured copper hexacyanidoferrate has been synthesized and characterized using elemental analysis, atomic absorption spectroscopy, thermal and infrared spectral studies. The transmission electron microscopic studies of the synthesized material showed that it consisted of irregular oval and rod shaped particles with a size range 70–100 nm. Nanostructured copper hexacyanidoferrate modified glassy carbon electrode was characterized by cyclic voltammetery and nanostructured copper hexacyanidoferrate–carbon nanotube composite material modified glassy carbon electrode has been used for electrocatalytic oxidation of salbutamol. The electrode modified with composite material was found to reduce the peak potential of oxidation of salbutamol by nearly 90 mV.  相似文献   
135.
In the blend of natural and synthetic polymer‐based biomaterial of polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC), fabrication of CaCO3 was successfully accomplished using simple liquid diffusion technique. The present study emphasizes the biomimetic mineralization in PVP–CMC hydrogel, and furthermore, several properties of this regenerated and functionalized hydrogel membranes were investigated. The physical properties were studied and confirmed the presence of CaCO3 mineral in hydrogel by Fourier transform infrared spectroscopy and Scanning electron microscopy. Moreover, the absorptivity of water and mineral by PVP–CMC hydrogel was studied to determine its absorption capacity. Further, the viscoelastic properties (storage modulus, loss modulus, and complex viscosity) of mineralized and swelled samples (time: 5–150 min) were measured against angular frequency. It is interesting to know the increase of elastic nature of mineralized hydrogel filled with CaCO3 maintaining the correlation between elastic property and viscous one of pure hydrogel. All these properties of biomineralized hydrogel suggest its application in biomedical field, like bone treatment, bone tissue regeneration, dental plaque and tissue replacement, etc. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40237.  相似文献   
136.
Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 °C for 30 min in case of Mg and at 400 °C for 2 h both for MgO and MgCO3 catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO3 catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 °C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.  相似文献   
137.
硝基苯类化合物是重要的化工原料和精细化工中间体,它性质稳定,属难降解有机物,不易被生物降解,对环境危害大。由于高浓度硝基苯类化合物对生物有抑制作用,难以生化降解,单一使用生化法处理高浓度硝基苯类废水不可行,因此必须在生化处理单元前进行预处理。通过预处理,改变硝基苯类化合物的分子结构,使之变成较易生物降解的化合物,降低废水的毒性,提高废水的可生化性,再用生化法处理,以达到消除环境污染的目的。  相似文献   
138.
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.  相似文献   
139.
The formation of neurofibrillary tangles (NFT) with β-sheet-rich structure caused by abnormal aggregation of misfolded microtubule-associated protein Tau is a hallmark of tauopathies, including Alzheimer’s Disease. It has been reported that acetylation, especially K174 located in the proline-rich region, can largely promote Tau aggregation. So far, the mechanism of the abnormal acetylation of Tau that affects its misfolding and aggregation is still unclear. Therefore, revealing the effect of acetylation on Tau aggregation could help elucidate the pathogenic mechanism of tauopathies. In this study, molecular dynamics simulation combined with multiple computational analytical methods were performed to reveal the effect of K174 acetylation on the spontaneous aggregation of Tau peptide 171IPAKTPPAPK180, and the dimerization mechanism as an early stage of the spontaneous aggregation was further specifically analyzed by Markov state model (MSM) analysis. The results showed that both the actual acetylation and the mutation mimicking the acetylated state at K174 induced the aggregation of the studied Tau fragment; however, the effect of actual acetylation on the aggregation was more pronounced. In addition, acetylated K174 plays a major contributing role in forming and stabilizing the antiparallel β-sheet dimer by forming several hydrogen bonds and side chain van der Waals interactions with residues I171, P172, A173 and T175 of the corresponding chain. In brief, this study uncovered the underlying mechanism of Tau peptide aggregation in response to the lysine K174 acetylation, which can deepen our understanding on the pathogenesis of tauopathies.  相似文献   
140.
Using Yarrowia lipolytica (DS-1), secretion of citric acid is studied as a function of carbon sources such as glucose, fructose, hydrol, sucrose, cane sugar molasses, kerosene (all available commercially) and tapioca starch hydrolysate, invert sucrose and invert cane sugar molasses (all prepared in laboratory). On the basis of their acceptability by DS-1 for citric and isocitric acid secretion, it is concluded that (a) sucrose and cane sugar molasses (with/without inversion) served as poor carbon sources, (b) fructose, hydrol, impure tapioca starch hydrolysate (96 DE w/w) and invert sucrose served as relatively better carbon sources and (c) purified tapioca starch hydrolysate (96 DE w/w) was the best carbon source to substitute glucose by giving comparable (75%) efficiency of conversion and economical advantage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号