首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89000篇
  免费   1301篇
  国内免费   457篇
电工技术   843篇
综合类   2328篇
化学工业   12457篇
金属工艺   4893篇
机械仪表   3170篇
建筑科学   2276篇
矿业工程   652篇
能源动力   1408篇
轻工业   4026篇
水利工程   1318篇
石油天然气   390篇
无线电   9850篇
一般工业技术   17477篇
冶金工业   3303篇
原子能技术   316篇
自动化技术   26051篇
  2023年   117篇
  2022年   269篇
  2021年   438篇
  2020年   268篇
  2019年   305篇
  2018年   14685篇
  2017年   13568篇
  2016年   10176篇
  2015年   775篇
  2014年   446篇
  2013年   615篇
  2012年   3382篇
  2011年   9665篇
  2010年   8456篇
  2009年   5693篇
  2008年   6919篇
  2007年   7890篇
  2006年   236篇
  2005年   1293篇
  2004年   1192篇
  2003年   1251篇
  2002年   601篇
  2001年   150篇
  2000年   236篇
  1999年   125篇
  1998年   223篇
  1997年   173篇
  1996年   153篇
  1995年   91篇
  1994年   78篇
  1993年   75篇
  1992年   52篇
  1991年   68篇
  1990年   45篇
  1989年   38篇
  1988年   42篇
  1987年   36篇
  1986年   38篇
  1985年   36篇
  1983年   35篇
  1968年   44篇
  1967年   36篇
  1966年   45篇
  1965年   47篇
  1959年   37篇
  1958年   37篇
  1957年   36篇
  1956年   35篇
  1955年   64篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
891.
892.
Superplastic forming (SPF) combined with diffusion bonding (DB) has been used successfully for the fabrication of titanium aerospace hardware. Many of these applications have been for military aircraft, whereby a complex built-up structure has been replaced with monolithic parts. Several methods for applying the two- and four-sheet titanium SPF/DB processes have been devised, including the welding of sheets prior to forming and the use of silk-screened stop-off (yttria) to prevent bonding where it is undesirable. Very little progress has been made in the past few years toward understanding and modeling the SPF/DB process using constitutive equations and data by laboratory testing. Concerns that engineers face in designing for fatigue life, acceptable design loads, and damage tolerance are currently being studied, but the database is very limited. This is a summary of past work found in the literature and forms the foundation for additional research. This paper was presented at the International Symposium on Superplasticity and Superplastic Forming sponsored by the Manufacturing Critical Sector at the ASM International AeroMat 2004 Conference and Exposition, June 8–9, 2004, in Seattle, WA. The symposium was organized by Daniel G. Sanders, The Boeing Company.  相似文献   
893.
The effects of the composition of plasma gases (Ar-N2, Ar-H2), arc current, and voltage on the temperature and velocity of a low-power (5 kW) plasma torch in the arc field free region has been investigated using an enthalpy probe. Coatings of Al2O3-13TiO2 were deposited under different conditions. The results show that in the Ar-N2 plasma, the enthalpy, temperature, and velocity change little with arc current and voltage when regulating the nitrogen proportion in the plasma gas. The hardness of the resulting coatings is 800 to 900 kg/mm2 HV.300. For Ar-H2 plasma, however, increases in the H2 content in the mixture of the gases remarkably enhanced the velocity and heat transfer ability of the plasma jet, with the result that the coatings showed high hardness up to 1200 HV.  相似文献   
894.
A ductile iron containing 0.6% copper as the main alloying element was austempered at a fixed austempering temperature of 330 °C for a fixed austempering time of 60 min after austenitization at 850 °C for different austenitization periods of 60, 90, and 120 min. The austempering process was repeated after changing austenitization temperature to 900 °C. The effect of austenitization temperature and time was studied on the carbon content and its distribution in the austenite after austenitization. The effect of austenitization parameters was also studied on austempered microstructure, structural parameters like volume fraction of austenite, X γ , carbon content C γ , and X γ C γ , and bainitic ferrite needle size, d α after austempering. The average carbon content of austenite increases linearly with austenitization time and reaches a saturation level. Higher austenitization temperature results in higher carbon content of austenite. As regards the austempered structure, the lowering austenitization temperature causes significant refinement and more uniform distribution of austempered structure, and a decrease in the volume fraction of retained austenite.  相似文献   
895.
Electromagnetic sheet metal forming is a high speed forming process using pulsed magnetic fields to form metals with high electrical conductivity such as aluminum. Thereby, workpiece velocities of more than 300 m/s are achievable, which can cause difficulties when forming into a die. The kinetic energy, which is related to the workpiece velocity, must be dissipated in a short time slot when the workpiece hits the die; otherwise undesired effects, for example rebound can occur. One possibility to handle this shortcoming is to locally increase the stiffness of the workpiece. A modal analysis is carried out in order to determine the stiffness of specific regions of the workpiece so that an estimation concerning the feasibility of the desired geometry is possible in advance without doing cost and time consuming experiments. Thereby, the desired geometry of the workpiece will be fractionized in significant sectors. This approach has to define the internal force variables acting on the cutting edge, which are required to constrain the numerical model. Finally, a method will be developed with the objective of calculating the stiffness of each sector. The numerical results will be verified by experiments. This article was presented at Materials Science & Technology 2006, Innovations in Metal Forming symposium held in Cincinnati, OH, October 15-19, 2006.  相似文献   
896.
Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis   总被引:5,自引:0,他引:5  
The superalloys Cu-Ni-Al, Cu-Ni-Fe, and Cu-Ni-Cr were studied as anodes for aluminum electrolysis. The alloys were tested for corrosion in acidic electrolyte molten salt and for oxidation in both air and oxygen. The results showed that the Cu-Ni-Al anodes possess excellent resistance to oxidation and corrosion, and the oxidation rates of Cu-Ni-Fe and Cu-Ni-Al anodes were slower than those of pure copper or nickel. During electrolysis, the cell voltage of the Cu-Ni-Al anode was affected most by the concentration of alumina in cryolite molten salt. The Cu-Ni-Fe anode exhibited corrosion resistance in electrolyte molten salt. Comparatively, the Cu-Ni-Cr anode showed poor resistance to oxidation and corrosion. The testing found that further study is warranted on the use of Cu-Ni-Al and Cu-Ni-Fe as inert alloy anodes. For more information, contact Zhongning Shi, Northeastern University, School of Materials and Metallurgy, WenhuiRoad No. 3, Shenynag, Liaoning 110004 China; e-mail znshi@163.com  相似文献   
897.
Metal-based thermal barrier coatings (MBTBCs) have been produced using high frequency induction plasma spraying (IPS) of iron-based nanostructured alloy powders. The study of MBTBCs has been initiated to challenge issues associated with current TBC materials such as difficult prediction of their “in-service” lifetime. Reliability of TBCs is an important aspect besides the economical consideration. Therefore, the study of MBTBCs, which should posses higher toughness than the current TBC materials, has been initiated to challenge the mechanical problems of ceramic-based TBCs (CBTBCs) to create a new generation of TBCs. The thermal diffusivity (TD) (α) properties of the MBTBCs were measured using a laser flash method, and density (ρ) and specific heat (C p) of the MBTBCs were also measured for their thermal conductivity (k) calculation (k = αρ C p).  相似文献   
898.
Superplastic forming and diffusion bonding (SPF/DB) production hardware is being fabricated today for aerospace applications. Metal tooling is being used to bring the titanium sheets into contact so diffusion bonding can occur. However, due to material sheet and tooling tolerances, good bond quality is difficult to achieve over large areas. A better method for achieving DB is to use “stop-off” inside sealed sheets of titanium, which constitutes a pack, and then the pack is bonded using external gas pressure. A good method for heating the pack for this process is to use induction heating. Components using “stop-off” that were diffusion bonded first and then superplastically formed have shown much better bond quality than components that were produced using matched metal tooling. This type of tooling has been successful at bonding small areas as long as the exerted pressure is concentrated on the area where bonding is required. Finite element modeling is providing weight effect solutions for titanium SPF/DB aerospace structures. This paper was presented at the International Symposium on Superplasticity and Superplastic Forming, sponsored by the Manufacturing Critical Sector at the ASM International AeroMat 2004 Conference and Exposition, June 8–9, 2004, in Seattle, WA. The symposium was organized by Daniel G. Sanders, The Boeing Company.  相似文献   
899.
Improvement of wear resistance of plasma-sprayed molybdenum blend coatings   总被引:3,自引:0,他引:3  
The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.  相似文献   
900.
The flame spraying process, which is a common industrial thermal spraying application, has been analyzed by means of three-dimensional computational fluid dynamics (CFD) simulations. The process used at the Volvo Aero Corporation for the coating of fan and compressor housings has been modeled. The process uses the Metco 6P torch (Metco, Westbury, NY), which ejects a mixture of acetylene and oxygen at high speed through a ring of 16 orifices to form the flame. A stream of argon gas flowing through an orifice in the center of the ring carries a powder of nickel-covered bentonite through the flame to the spray substrate. The torch is cooled by a flow of air through an outer ring of 9 orifices. The simulation emulated reality closely by including the individual inlets for fuel, cooling air, and injected particles. The gas combustion was simulated as a turbulent, multicomponent chemically reacting flow. The standard, two-equation k-ε turbulence model was used. The chemical reaction rates appeared as source terms in the species transport equations. They were computed from the contributions of the Arrhenius rate expressions and the Magnussen and Hjertager eddy dissipation model. The first simulations included several intermediate chemical substances whose predicted concentration agreed favorably with measurements. Later, more simplified simulations incorporated only the global chemical reaction involving the initial and the final products, with corrections to the thermal properties being made to account for the missing intermediaries. The gas velocity and temperature fields predicted by the later simulations compared satisfactorily to those predicted by the earlier, more elaborate, ones. Therefore, the final simulations, which incorporated injected particles, were conducted employing the simplified model with only the global reaction. An in-house finite difference code was developed to calculate particle properties. Allowance was made for elliptical shapes, phase changes, and internal heat transfer with regard to the composite material. The particle velocities and temperatures predicted by the final simulations compared fairly well with experimental results obtained with the optical DPV2000 system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号