首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   25篇
  国内免费   5篇
电工技术   4篇
化学工业   90篇
金属工艺   5篇
机械仪表   19篇
建筑科学   15篇
矿业工程   1篇
能源动力   29篇
轻工业   13篇
水利工程   2篇
石油天然气   2篇
无线电   36篇
一般工业技术   65篇
冶金工业   43篇
原子能技术   7篇
自动化技术   88篇
  2024年   1篇
  2023年   3篇
  2022年   13篇
  2021年   28篇
  2020年   17篇
  2019年   19篇
  2018年   30篇
  2017年   21篇
  2016年   13篇
  2015年   14篇
  2014年   21篇
  2013年   41篇
  2012年   35篇
  2011年   35篇
  2010年   22篇
  2009年   9篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   10篇
  1997年   9篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   5篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
111.
Nanotwinned (nt)‐metals exhibit superior mechanical and electrical properties compared to their coarse‐grained and nanograined counterparts. nt‐metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt‐metals. Microscale 3D printing of nt‐Cu is demonstrated with high density of coherent twin boundaries using a new room temperature process based on localized PED (L‐PED). The 3D printed nt‐Cu is fully dense, with low to none impurities, and low microstructural defects, and without obvious interface between printed layers, which overall result in good mechanical and electrical properties, without any postprocessing steps. The L‐PED process enables direct 3D printing of layer‐by‐layer and complex 3D microscale nt‐Cu structures, which may find applications for fabrication of metamaterials, sensors, plasmonics, and micro/nanoelectromechanical systems.  相似文献   
112.
In this paper we develop a mathematical model which considers multiple-supplier single-item inventory systems. The lead times of the suppliers and demand arrival rate are random variables. All shortages are backordered. Continuous review (s, Q) policy has been assumed. When the inventory level hits the reorder level, the total order is split among n suppliers. The problem is to determine the reorder level and order quantity for each supplier so that the expected total cost per time unit, including ordering cost, procurement cost, inventory holding cost and shortage cost is minimized. We also conduct extensive numerical experiments to show the advantages of our model compared to the relevant models in the literature. In addition, some managerial insights are observed.  相似文献   
113.
114.
We report the use of a silicon microfabricated device as a new spinneret for electrospinning purposes. This device has been realized on silicon substrates using a deep reactive ion etching process. To make proper holes in the center of microneedles, a rotating angle deposition method followed by vertical etching of silicon is employed. By using these needles as fluid nozzles in the electrospinning process, poly vinyl alcohol solution with a concentration of 7?% has been converted into nanofibers. The formation of nanofibers has been investigated using field emission scanning electron microscopy. Using this process, nanofibers with a diameter of 100–200?nm are realized where the dispersion is less than 50?nm. Finally, the effects of needle size and the applied voltage have been investigated on the diameter of nanofibers.  相似文献   
115.
A simple approach is introduced to locate a side-draw tray for ternary and multi-component mixtures with middle boiling component(s) present in the system at trace levels. The concept is based on a probability function defined by the thermodynamic properties of the system. The advantage of this method over existing methods is the ability to quickly and efficiently provide a feasible configuration of the distillation unit without relying on rigorous optimization or trial and error approaches. Moreover, it provides an intuitive understanding of the movements of the middle boiling components in the column.  相似文献   
116.
Superior controllability of reactive distillation (RD) systems, designed at the maximum driving force (design-control solution) is demonstrated in this article. Binary or multielement single or double feed RD systems are considered. Reactive phase equilibrium data, needed for driving force analysis and design of the RD system, is generated through an in-house property prediction tool. Rigorous steady-state simulation is carried out in ASPEN plus in order to verify that the predefined design targets and dynamics are met. A multiobjective performance function is employed to evaluate the performance of the RD system in terms of energy consumption, sustainability metrics (total CO2 footprint), and control performance. Controllability of the designed system is evaluated using indices like the relative gain array (RGA) and Niederlinski index (NI ), to evaluate the degree of loop interaction, as well as through dynamic simulations using proportional-integral (PI) controllers and model predictive controllers (MPC). The design-control of the RD systems corresponding to other alternative designs that do not take advantage of the maximum driving force is also investigated. The analysis shows that the RD designs at the maximum driving force exhibit enhanced controllability and lower carbon footprint than the alternative RD designs.  相似文献   
117.
In this study, the evaluation of the performance of the split internal loop photobioreactor for culturing a species of green microalgae, Scenedesmus sp. under different operating superficial gas velocity and during a different time of growth (i.e., starting for the first day until end day of the culturing process) was addressed. The evaluation of the performance of the split internal loop photobioreactor was included assessing the density, pH, temperature, vis-cosity, surface tension, the optical density, cell population, dry biomass, and chlorophyll of the culture medium of the microalgae culturing. Additionally, the hydrodynamics of a Split Internal-Loop Photobioreactor with microalgae culturing was comprehensively quantified. Radioactive particle tracking (RPT) and gamma-ray com-puted tomography (CT) techniques were applied for the first time to quantify and address the influence of microalgae culture on the hydrodynamic parameters. The hydrodynamics parameters such as local liquid veloc-ity field, shear stresses, turbulent kinetic energy, and local gas holdup profiles were measured at different super-ficial gas velocities as well as under different times of algae growth. The obtained results indicate that the flow distribution may significantly affect the performance of the photobioreactor, which may have substantial effects on the cultivation process. The obtained experimental data can serve as benchmark data for the evaluation and validation of computational fluid dynamics (CFD) codes and their closures. This, in turn, allows us to develop ef-ficient reactors and consequently improving the productivity and selectivity of these photobioreactors.  相似文献   
118.

To achieve an efficient methodology for approximating pan evaporation (EP), this study offers two metaheuristic-integrated predictors. Shuffled complex evolution (SCE) and electromagnetic field optimization (EFO) are two of the fastest metaheuristic algorithms that are synthesized with artificial neural network (ANN). By doing this, the ANN is optimized in a noticeably shorter time compared to its integration with other metaheuristic techniques. Five-year climatic data of the Bakersfield station (California, USA) with an 80:20 ratio are used for developing and testing the methods. The proposed hybrids are implemented with appropriate population sizes (20 and 35 for the SCE and EFO, respectively) and their results are compared to a single ANN. Accuracy evaluation (correlation coefficients > 0.99) professed that the neural network with both conventional and sophisticated trainers is a competent approach for the EP simulation. Besides, it was observed that the error of prediction by the ANN-SCE and ANN-EFO is 6.02 and 9.27% lower than the single ANN, respectively. Therefore, the used strategies can enhance the applicability of the ANN. The time elapsed in the optimization using SCE and EFO was 479.0 and 281.9 s, respectively. A comparison between these algorithms revealed that the EFO is both a faster and more accurate optimizer. The ANN-EFO is accordingly recommended as a new efficient model for predicting the EP.

  相似文献   
119.
In this article, we investigate and employ torque redistribution and time regulation approaches to track a preplanned trajectory while avoiding actuator saturation for redundantly actuated, fault-tolerant parallel robots encountering actuator failure. The torque redistribution method utilizes actuation redundancies (if available) after joint failure and/or saturation to alter the torque requirements of the joints so as to avoid saturation. The time regulation method is based upon the alteration of the time to completion of the defined joint-space trajectory. By searching for a suitable time scaling factor to change (reduce) the inertia load requirements, the robot attempts to slow down or speed up as it moves along the defined trajectory to avoid saturation. The preferred implementation strategy is to use the torque redistribution approach when redundancy is available and actuation capacity is sufficient, otherwise the time regulation approach is employed. For both methods, the computed torque technique, consisting of a model reference algorithm in the feedforward process, and a proportional plus integral plus derivative (PID) controller, to deal with modeling errors and disturbances in the feedback process, are utilized.  相似文献   
120.
Image processing is an important stage of every microarray experiment. Reliability of this stage strongly influences the results of data analysis performed on extracted gene expressions. Multiple methods related to array recognition, spot segmentation and measurement extraction have emerged in this area over past several years. Currently there are various commercial and freeware packages available, which perform microarray image analysis. This paper attempts to review microarray image analysis as a whole and to make some experimental comparison of several computational schemes for signal segmentation and measurement extraction. Also we provide a detailed discussion of automated image quality control for use with microarray images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号