首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
电工技术   4篇
化学工业   2篇
金属工艺   2篇
机械仪表   3篇
能源动力   4篇
水利工程   2篇
无线电   3篇
一般工业技术   13篇
自动化技术   4篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
31.
Nanostructured thin films of undoped and Ag-doped cuprous oxide were deposited on indium tin oxide-coated glass substrate using simple spray pyrolysis method for their use as photocathode in photoelectrochemical (PEC) cell for solar energy based water splitting. Combination of experiments and first-principles density functional theory based calculations was used to determine and understand the effect of Ag substitution on electronic structure and PEC performance. Thin films were characterized using XRD, FE-SEM, UV–Vis spectroscopy and PEC measurements. The results of DFT calculations show that the top of valence band and bottom of conduction band of undoped Cu2O lie at Г point of brillouin zone, respectively, suggesting that pure Cu2O is a direct band gap material. Minimal changes appear in the band gap and band gap energies in the Ag-doped Cu2O system, keeping it still a direct band gap material. A defect band appearance can be seen between ?4 and ?5 eV in the valence band consisting mainly of Ag 4d states and can be explained by a stronger interaction between the Ag 4d and O 2p, due to the larger Ag size. Ag-doped samples exhibit improved conductivity and fourfold increase in photocurrent density with respect to undoped samples.  相似文献   
32.
In this paper, a methodology is proposed for expediting the coupled electro‐mechanical two‐dimensional finite element modeling of electrostatically actuated MEMS. The proposed methodology eliminates the need for repeated finite element meshing and subsequent electrostatic modeling of the device during mechanical deformation. We achieve this by mapping the deformed electrostatic domain to the reference undeformed domain ‘conformally’. A ‘conformal’ map preserves the form of the Laplace equation and the boundary conditions; thus the electrostatic problem is solved only once in the undeformed electrostatic domain. The conformal map itself is generated through the solution of the same Laplace equation on the undeformed geometry and with displacement boundary conditions dictated by the movement of the mechanical domain. The proposed methodology is demonstrated through its application to the modeling of three MEMS devices with varying length‐to‐gap ratios, multiple dielectrics and complicated geometries. The accuracy of the proposed methodology is confirmed through comparisons of its results with results obtained using the conventional finite element solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
33.
34.
Developing a domain-specific language (DSL) or a composition of DSLs to model a system concern, such as deploying and configuring software components to meet real-time scheduling constraints, is time consuming. Ideally, developers should be able to reuse DSLs and DSL compositions across projects to amortize development effort. Reusing DSLs is hard, however, because they're often designed to precisely describe a single domain or concern. A new approach uses techniques from software product lines (SPLs) to improve the reusability of a DSL, DSL composition, or supporting tool by providing traceability of language concepts to DSL design. A case study of four DSLs demonstrates the need for—and benefits of—applying SPL reuse techniques to DSLs.  相似文献   
35.
Novel three-dimensional hybrid polymer–hydroxyapatite nanocomposites have been developed as load-bearing synthetic bone graft through in situ mineralization process, using natural polymers carboxymethyl cellulose (CMC) and gelatin (Gel) as matrix. This process is simple and does not involve any chemical cross-linker. Detailed structural and physicochemical characterization of the samples disclosed that incorporation of gelatin with CMC assists the formation of CMC-Gel polymeric network of new conformational structure through non-covalent interactions (H-bond). The formation of hydroxyapatite (HA) in this polymeric network was occurred in such a fashion that the HA serves as bridging molecule which strengthen the polymeric network more and formed a mechanically strong three-dimensional CMC-Gel-HA nanocomposite. The synthesized CMC-Gel-HA nanocomposites have compressive strength and modulus in the range of 40–86 MPa and 0.4–1.2 GPa, respectively, analogous to human cancellous as well as cortical bone. In vitro cell interaction of the synthesized nanocomposites with osteoblast-like MG-63 cells has been evaluated. Results showed that synthesized CMC-Gel-HA nanocomposite promote cells for high alkaline phosphatase activity and extracellular mineralization. Extracellular mineralization ability of nanocomposite was investigated by alizarin red staining and von Kossa staining. Biodegradable nature and bone apatite formation ability of CMC-Gel-HA nanocomposite under simulated physiological environment were investigated by different characterization processes. Results indicated that the synthesized CMC-Gel-HA nanocomposite has great potential to be used as regenerative bone graft in major load-bearing region.  相似文献   
36.
We show that thin diamond coatings can dramatically enhance the performance of micrometer-scale cutting tools. We present a new approach for coating 300 μm diameter tungsten carbide (WC) micro end mills using a tailored seeding method and hot filament chemical vapor deposition (HFCVD) to obtain uniform, conformal, and continuous diamond coatings less than 2 μm in both thickness and grain size. The performance of the uncoated and coated tools has been evaluated by dry machining channels in 6061-T6 aluminum. The test results demonstrate far lower tool wear and breakage, much lower adhesion of aluminum to the tool, and significantly lower cutting forces for the coated tools. The coatings achieve a more predictable surface finish and enable dry machining at high speeds (40,000 rpm) with little or no burr formation. The improved performance of the coated tools is a result of the superior tribological properties of fine-grained diamond against aluminum, specifically low friction, low adhesion, and low wear of the film. Since the coating allows machining without lubricants and essentially eliminates metal burrs, this approach can reduce the environmental impact of micro-machining processes and offers greatly improved performance for micro and meso-scale manufacturing applications.  相似文献   
37.
Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM–NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM–NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO2. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号