Cell formation consists in organizing a plant as a set of cells, each of them containing machines that process similar types or families of parts. The idea is to minimize the part flow among cells in order to reduce costs and increase productivity. The literature presents different approaches devoted to solve this problem, which are mainly based on mathematical programming and on evolutionary computing. Mathematical programming can guarantee a global optimal solution, however at a higher computational cost than an evolutionary algorithm, which can assure a good enough optimum in a fixed amount of time. In this paper, we model and solve this problem by using state-of-the-art constraint programming (CP) techniques and Boolean satisfiability (SAT) technology. We present different experimental results that demonstrate the efficiency of the proposed optimization models. Indeed, CP and SAT implementations are able to reach the global optima in all tested instances and in competitive runtime. 相似文献
The promising experimental performance of surfactant blends encourages their use in recovering the large quantity of crude oil still remaining in carbonate reservoirs. Phase behavior studies were carried out in this work to propose a blend for practical application. To that aim, the surfactants dioctyl sulfosuccinate sodium (AOT) and polyoxyethylene(8) octyl ether carboxylic acid (Akypo LF2) were mixed. A formulation consisting of 1 wt% of AOT50wt%/LF250wt% blend in synthetic sea water (SSW) led to a low value of interfacial tension with crude oil of 1.50·10−2 mN/m, and 0.42 mg/grock of dynamic adsorption. A moderate additional oil recovery (7.3% of the original oil in place) was achieved in a core flooding test. To improve this performance, the surface-active ionic liquid 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) was added to the system. The electrostatic interactions between the oppositely charged surfactants (AOT and [C12mim]Br) led to a higher surface activity. Thus, a formulation consisting of 0.8 wt% of AOT20.7wt%/[C12mim]Br25.3wt%/LF254wt% in SSW reduced the interfacial tension and surfactant adsorption achieved with the binary blend to 1.14 × 10−2 mN/m and 0.21 mg/grock, respectively. The additional oil recovery achieved with the blend containing the ionic liquid was 11.5% of the original oil in place, significantly improving the efficiency of the binary blend. 相似文献
Modern human societies have evolved into an almost entirely connected world, giving place to a remarkable increase in social interactions. In this new context and because of the globalization of all human activities, the collective participation in decision‐making processes takes an increasingly prominent role. In this paper, a method for group decision making from a set of imprecise opinions called “moviQuest Decision Making” (MQDM), is presented. This method allows to integrate the opinions of heterogeneous groups of agents in a structured social network along a sequence of voting rounds for collective decision making. 相似文献
Slices (1.5 mm thick) of green papaya were impregnated through osmotic dehydration with a blackberry juice–sucrose solution to produce an intermediate moisture product. The effect of processing temperature (T) and sucrose-added molality (msucrose) on mass transfer during the operation was assessed, using a response surface methodology (RSM). The RSM was used to model water loss, sugar and anthocyanin gain during the process. Increasing sucrose molality resulted in increasing water loss and sugar gain, but decreasing anthocyanin gain. Water transfer therefore limits anthocyanin impregnation, but not sucrose incorporation. Afterwards, the impact of heat treatment at high temperatures was analysed, using numerical simulation. The conditions of the combined process, designed to achieve an anthocyanin-rich final product, are low sucrose-added molalities (sucrose molality < 1 mol kg–1) and high processing temperatures (T > 50 ºC) for osmotic dehydration, coupled with high-temperature, short-time (HTST) heat treatments for product stabilisation. 相似文献
LiCoO2 is a prime example of widely used cathodes that suffer from the structural/thermal instability issues that lead to the release of their lattice oxygen under nonequilibrium conditions and safety concerns in Li‐ion batteries. Here, it is shown that an atomically thin layer of reduced graphene oxide can suppress oxygen release from LixCoO2 particles and improve their structural stability. Electrochemical cycling, differential electrochemical mass spectroscopy, differential scanning calorimetry, and in situ heating transmission electron microscopy are performed to characterize the effectiveness of the graphene‐coating on the abusive tolerance of LixCoO2. Electrochemical cycling mass spectroscopy results suggest that oxygen release is hindered at high cutoff voltage cycling when the cathode is coated with reduced graphene oxide. Thermal analysis, in situ heating transmission electron microscopy, and electron energy loss spectroscopy results show that the reduction of Co species from the graphene‐coated samples is delayed when compared with bare cathodes. Finally, density functional theory and ab initio molecular dynamics calculations show that the rGO layers could suppress O2 formation more effectively due to the strong C? Ocathode bond formation at the interface of rGO/LCO where low coordination oxygens exist. This investigation uncovers a reliable approach for hindering the oxygen release reaction and improving the thermal stability of battery cathodes. 相似文献
Many natural surfaces such as butterfly wings, beetles' backs, and rice leaves exhibit anisotropic liquid adhesion; this is of fundamental interest and is important to applications including self‐cleaning surfaces, microfluidics, and phase change energy conversion. Researchers have sought to mimic the anisotropic adhesion of butterfly wings using rigid surface textures, though natural butterfly scales are sufficiently compliant to be deflected by capillary forces exerted by drops. Here, inspired by the flexible scales of the Morpho aega butterfly wing, synthetic surfaces coated with flexible carbon nanotube (CNT) microscales with anisotropic drop adhesion properties are fabricated. The curved CNT scales are fabricated by a strain‐engineered chemical vapor deposition technique, giving ≈5000 scales of ≈10 µm thickness in a 1 cm2 area. Using various designed CNT scale arrays, it is demonstrated that the anisotropy of drop roll‐off angle is influenced by the geometry, compliance, and hydrophobicity of the scales; and a maximum roll‐off anisotropy of 6.2° is achieved. These findings are supported by a model that relates the adhesion anisotropy to the scale geometry, compliance, and wettability. The electrical conductivity and mechanical robustness of the CNTs, and the ability to fabricate complex multidirectional patterns, suggest further opportunities to create engineered synthetic scale surfaces. 相似文献
The chiral phosphazene copolymers {[NP(O2C12H8)]0.9[NP(O2C20H12)]0.1} (1) and {[NP(O2C12H8)]0.9[NP(O2C20H10Br2)]0.1}n (2) [(O2C12H8) = 2,2′-dioxy-1,1′-biphenyl; (O2C20H12) = R-2,2′-dioxy-1,1′-binaphthyl and (O2C20H10Br2) = R-6,6′-dibromo-2,2′-dioxy-1,1′-binaphthyl] were prepared by sequential substitution from [NPCl2]n and the corresponding dihydroxy-biphenyl or binaphthyl reagents in the presence of Cs2CO3 and K2CO3. The reaction of (2) with tBuLi in THF, followed by addition of PPh2Cl and a treatment with SiHCl3/PPh3 to eliminate any oxidized OC6H4P(O)Ph2 groups, gave the phosphine containing copolymer {[NP(O2C12H8)]0.9[NP(O2C20H10[PPh2]2)]0.1}n (3), that was used as a chiral ligand to support [Ru(p-cymene)Cl] complexes. The resulting catalyst was active for hydrogen
transfer from isopropyl alcohol to acetophenone but the placement of the Ru centers in the 6,6′-positions of the binaphthoxyphosphazene
units induced no enantioselectivity.
Dedicated to Professor Christopher Allen. 相似文献
Three new guanylated cyclophosphazenes G1–G3 have been synthesized through the catalytic guanylation of three different bi, tetra and hexa (p-aminophenoxy)-cyclophosphazenes by using N,N’-diisopropylcarbodiimide as guanylating agent, ZnEt2 as catalyst and dry tetrahydrofuran as solvent. The resulting products have been characterized by 1H, 13C{1H} and 31P{1H} NMR spectroscopy. The hexaguanylated cyclophosphazenes exhibit a deep purple colour, unusual for this type of compounds. The electronic structure of these compounds was investigated by carrying out density functional calculations at PBE-D3(BJ)/TZP level of theory. The molecular structural analysis reveals that aromatic rings are stacked and time dependent density functional calculations show that a charge transfer electronic transition occurs between the aromatic rings which absorb light around 500–700 nm. Finally, the catalytic usefulness of guanylated cyclophosphazene compounds G1–G3 has been proven by the preparation of styrene carbonate from the reaction between styrene oxide and carbon dioxide.
Carbonaceous particulate matter (PM) was collected by both thermal precipitation and glass fiber filters from specific combustion sources and examined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). PM from various natural gas burner combustion regimes (NGPM), burning tires (TPM), a heavy duty diesel truck (DPM), wood burning (WPM), candle burning (CPM), along with commercial black carbon (BC) powder and multiwall carbon nanotube (MWCNT) aggregates material exhibited similarities in PM microstructure, and average primary spherule diameters. The spherule structures consisted of curved graphene fragments and intercalated polycyclic aromatic hydrocarbons (PAH). PAH concentrations were measured and compared for these PMs, including PAH diagnostic ratios. An analysis of PAH carcinogenicity either as a carcinogenicity index or a potency equivalency factor from literature data indicated that only the TPM PAH content would pose any significant long term, carcinogenicity threat. 相似文献