首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192609篇
  免费   8769篇
  国内免费   4699篇
电工技术   6882篇
技术理论   5篇
综合类   5268篇
化学工业   24601篇
金属工艺   9946篇
机械仪表   7547篇
建筑科学   8327篇
矿业工程   1970篇
能源动力   5422篇
轻工业   13728篇
水利工程   2082篇
石油天然气   4023篇
武器工业   547篇
无线电   25037篇
一般工业技术   33974篇
冶金工业   34853篇
原子能技术   2335篇
自动化技术   19530篇
  2023年   1528篇
  2022年   2400篇
  2021年   3758篇
  2020年   2765篇
  2019年   2579篇
  2018年   3680篇
  2017年   3717篇
  2016年   3721篇
  2015年   4032篇
  2014年   5186篇
  2013年   9737篇
  2012年   7560篇
  2011年   9031篇
  2010年   7763篇
  2009年   8088篇
  2008年   8582篇
  2007年   8576篇
  2006年   7867篇
  2005年   6828篇
  2004年   5918篇
  2003年   6042篇
  2002年   6282篇
  2001年   6151篇
  2000年   4891篇
  1999年   5241篇
  1998年   12717篇
  1997年   8452篇
  1996年   6644篇
  1995年   4519篇
  1994年   3885篇
  1993年   3615篇
  1992年   2220篇
  1991年   2083篇
  1990年   1876篇
  1989年   1651篇
  1988年   1467篇
  1987年   1104篇
  1986年   1084篇
  1985年   1178篇
  1984年   1012篇
  1983年   879篇
  1982年   851篇
  1981年   864篇
  1980年   754篇
  1979年   606篇
  1978年   518篇
  1977年   749篇
  1976年   1429篇
  1975年   384篇
  1973年   366篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
122.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   
123.
Point centromeres, found in some ascomycete yeasts such Saccharomyces cerevisiae, are very different in structure from the centromeres of other eukaryotes. They are tiny and nonrepetitive and contain only two short conserved sequence motifs. Until recently, point centromeres were thought to have a single evolutionary origin, in the budding yeast family Saccharomycetaceae. Most yeasts outside this family have centromeres that are many kilobases in size. Some have centromeres consisting of a large inverted repeat sequence, others have centromeric clusters of retrotransposons, and a third group including Candida albicans has centromeres with no conserved sequence features. It was recently reported that Scheffersomyces stipitis has point centromeres with a strongly conserved 125-bp core sequence, which is unexpected because Sstipitis is only distantly related to the known point-centromere species. We show here that the 125-bp core sequence is actually part of the long terminal repeat (LTR) of the Ty5-like retrotransposon Tps5, which forms a cluster in the centromeric region of each Sstipitis chromosome. Thus, the LTR of a centromere-associated retrotransposon confers centromere-like mitotic stability when cloned into a plasmid. The centromeric regions of Sstipitis contain three types of Tps5 element (Tps5a, Tps5b, and Tps5c) and a noncoding nonautonomous large retrotransposon derivative.  相似文献   
124.
Protozoal infections are still a global health problem, threatening the lives of millions of people around the world, mainly in impoverished tropical and sub-tropical regions. Thus, in view of the lack of efficient therapies and increasing resistances against existing drugs, this study describes the antiprotozoal potential of synthetic cinnamate ester analogues and their structure-activity relationships. In general, Leishmania donovani and Trypanosoma brucei were quite susceptible to the compounds in a structure-dependent manner. Detailed analysis revealed a key role of the substitution pattern on the aromatic ring and a marked effect of the side chain on the activity against these two parasites. The high antileishmanial potency and remarkable selectivity of the nitro-aromatic derivatives suggested them as promising candidates for further studies. On the other hand, the high in vitro potency of catechol-type compounds against T. brucei could not be extrapolated to an in vivo mouse model.  相似文献   
125.
In this study, yttrium iron garnet co-doped with Zn and Zr atoms with a chemical formula Y3ZnxZrxFe(5−2x)O12 (x = 0.0-0.3) has been successfully prepared by the solid-state reaction method. The effects of doping concentration on the microstructure, crystal structure, magnetic properties, and dielectric properties of Y3ZnxZrxFe(5−2x)O12 were investigated. The microstructure analysis indicates that co-doping of YIG with Zn and Zr can effectively reduce the grain size of the ceramic. The crystal structure results reveal that the doping concentration of Zn–Zr has substantial influence on the lattice parameters of YIG, such as, increases the lattice constant, crystal cell size, and interplanar spacing. However, the second phase of ZrO2 appears once ≥ 0.15. Additionally, the dielectric properties of YIG ferrite can be regulated using this Zn–Zr co-doping method. Zn–Zr co-doping can improve the dielectric stability and reduce the dielectric loss at high temperature. The magnetization measurement shows that the saturation magnetization is stabilized at x < 0.15, and the magnetic loss is decreased with the increase in the doping concentration. Overall, the findings show that the ceramic with x = 0.1 exhibits better properties included high saturation magnetization (24.607 emu/g), low magnetic loss (0.0025 @ 1 MHz), and relatively low dielectric loss (496 @ 400°C).  相似文献   
126.
A novel dual-rotation bobbin tool friction stir welding (DBT-FSW) was developed, in which the upper shoulder (US) and lower shoulder (LS) have different rotational speeds. This process was tried to weld 3.2 mm thick aluminum-lithium alloy sheets. The metallographic analysis and torque measurement were carried out to characterize the weld formability. Experimental results show that compared to conventional bobbin tool friction stir welding, the DBT-FSW has an excellent process stability, and can produce the defect-free joints in a wider range of welding parameters. These can be attributed to the significant improvement of material flow caused by the formation of a staggered layer structure and the unbalanced force between the US and LS during the DBT-FSW process.  相似文献   
127.
Video transmission over IEEE 802.11e wireless networks still shows poor performance for large bandwidth demand and frequently changed environments. Thus, several enhancements of IEEE 802.11e were proposed. On the other hand, big frames and simultaneous sending of adjacent frames always cause packet dropping for buffer overflow. In the past, we proposed an IEEE 802.11e enhancement named DFAA and a content aware mechanism to solve the above problems. The motivation of this paper is to find a proper way to integrate these two mechanisms. A DFAA enhancement (DFAA-E) is proposed to make up the insufficiency of content aware mechanism. Experiments results show that the combination of DFAA-E and content aware mechanism improves the video decoded quality greatly. And its performance can be further enhanced by selecting the suitable settings of certain parameters.  相似文献   
128.
Perovskite ferroelectrics possess the fascinating piezoelectric properties near a morphotropic phase boundary, attributing to a low energy barrier that the results in structural instability and easy polarization rotation. In this work, a new lead-free system of (1-x)BaTiO3-xCaHfO3 was designed, and characterized by a coexistence of ferroelectric rhombohedral-orthorhombic-tetragonal (R-O-T) phases. With the increase amount of CaHfO3 (x), a stable coexistence region of three ferroelectric phases (R-O-T) exists at 0.06  x  0.08. Both large piezoelectric coefficient (d33~400 pC/N), inverse piezoelectric coefficient (d33*~547 pm/V) and planar electromechanical coupling factor (kp~58.2%) can be achieved for the composition with x = 0.08 near the coexistence of three ferroelectric phases. Our results show that the materials with the composition located at a region where the three ferroelectric R-O-T phases coexist would have the lowest energy barrier and thus greatly promote the polarization rotation, resulting in a strong piezoelectric response.  相似文献   
129.
The solvent-dependent polymorphism of the active pharmaceutical ingredient (API) carbamazepine is interpreted from calculations of the solid-state and API-solvent intermolecular interactions. These simulations suggested that apolar solute-solute interactions could be disrupted by apolar solvents. In contrast, the polar solute-solute interactions were found to be easily disrupted by polar and protic solvents. This is consistent with experimental observations that the crystallization of the metastable form II is more dominant in apolar solvents. The Mercury program remains the gold standard in terms of usability; however, further expansion into more complex simulation techniques could make this package of even greater use in pharmaceutical manufacturing workflows.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号