首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53668篇
  免费   4461篇
  国内免费   2463篇
电工技术   2956篇
技术理论   3篇
综合类   3772篇
化学工业   9033篇
金属工艺   3055篇
机械仪表   3496篇
建筑科学   4280篇
矿业工程   1673篇
能源动力   1428篇
轻工业   3823篇
水利工程   1025篇
石油天然气   3020篇
武器工业   428篇
无线电   5996篇
一般工业技术   6184篇
冶金工业   2396篇
原子能技术   599篇
自动化技术   7425篇
  2024年   228篇
  2023年   849篇
  2022年   1643篇
  2021年   2267篇
  2020年   1771篇
  2019年   1431篇
  2018年   1568篇
  2017年   1697篇
  2016年   1596篇
  2015年   2215篇
  2014年   2761篇
  2013年   3306篇
  2012年   3543篇
  2011年   3879篇
  2010年   3352篇
  2009年   3176篇
  2008年   3140篇
  2007年   2819篇
  2006年   2817篇
  2005年   2356篇
  2004年   1664篇
  2003年   1589篇
  2002年   1766篇
  2001年   1510篇
  2000年   1207篇
  1999年   1353篇
  1998年   964篇
  1997年   836篇
  1996年   728篇
  1995年   613篇
  1994年   499篇
  1993年   347篇
  1992年   263篇
  1991年   196篇
  1990年   167篇
  1989年   144篇
  1988年   111篇
  1987年   55篇
  1986年   40篇
  1985年   36篇
  1984年   24篇
  1983年   15篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   11篇
  1959年   2篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
In electronic systems, dynamic random access memory (DRAM) is one of the core modules in the modern silicon computer. As for a bio‐computer, one would need a mechanism for storage of bio‐information named ‘data’, which, in binary logic, has two levels, logical high and logical low, or in the normalised form, ‘1’ and ‘0’. This study proposes a possible genetic DRAM based on the modified electronic configuration, which uses the biological reaction to fulfil an equivalent RC circuit constituting a memory cell. The authors implement fundamental functions of the genetic DRAM by incorporating a genetic toggle switch for data hold. The results of simulation verify that the basic function can be used on a bio‐storage module for the future bio‐computer.Inspec keywords: DRAM chips, genetic engineering, biocomputers, bioinformatics, equivalent circuits, RC circuitsOther keywords: dynamic genetic memory design, electronic systems, dynamic random access memory, modern silicon computer, biocomputer, bioinformation, binary logic, logical high level, logical low level, normalised form, genetic DRAM, modified electronic configuration, biological reaction, equivalent RC circuit, memory cell, fundamental functions, genetic toggle switch, data hold, biostorage module  相似文献   
92.
Zhang  Jingfei  Qi  Lijuan  Zhu  Xiaoshu  Yan  Xiaohong  Jia  Yufeng  Xu  Lin  Sun  Dongmei  Tang  Yawen 《Nano Research》2017,10(9):3164-3177

The homogeneous incorporation of heteroatoms into two-dimensional C nanostructures, which leads to an increased chemical reactivity and electrical conductivity as well as enhanced synergistic catalysis as a conductive matrix to disperse and encapsulate active nanocatalysts, is highly attractive and quite challenging. In this study, by using the natural and cheap hydrotropic amino acid proline—which has remarkably high solubility in water and a desirable N content of ~12.2 wt.%—as a C precursor pyrolyzed in the presence of a cubic KCl template, we developed a facile protocol for the large-scale production of N-doped C nanosheets with a hierarchically porous structure in a homogeneous dispersion. With concomitantly encapsulated and evenly spread Fe2O3 nanoparticles surrounded by two protective ultrathin layers of inner Fe3C and outer onion-like C, the resulting N-doped graphitic C nanosheet hybrids (Fe2O3@Fe3C-NGCNs) exhibited a very high Li-storage capacity and excellent rate capability with a reliable and prolonged cycle life. A reversible capacity as high as 857 mAh•g–1 at a current density of 100 mA•g–1 was observed even after 100 cycles. The capacity retention at a current density 10 times higher—1,000 mA•g–1—reached 680 mAh•g–1, which is 79% of that at 100 mA•g–1, indicating that the hybrids are promising as anodes for advanced Li-ion batteries. The results highlight the importance of the heteroatomic dopant modification of the NGCNs host with tailored electronic and crystalline structures for competitive Li-storage features.

  相似文献   
93.
A facile one-step approach to synthesize various phase-separated porous, raspberry-like, flower-like, core–shell and anomalous nanoparticles and nanocapsules via 1,1-diphenylethene (DPE) controlled soap-free emulsion copolymerization of styrene (S) with glycidyl methacrylate (GMA), or acrylic acid (AA) is reported. By regulating the mass ratio of S/GMA, transparent polymer solution, porous and anomalous P(S-GMA) particles could be produced. The P(S-GMA) particles turn from flower-like to raspberry-like and then to anomalous structures with smooth surface as the increase of divinylbenzene (DVB) crosslinker. Transparent polymer solution, nanocapsules and core–shell P(S-AA) particles could be obtained by altering the mole ratio of S/AA; anomalous and raspberry-like P(S-AA) particles are produced by adding DVB. The unpolymerized S resulted from the low monomer conversion in the presence of DPE aggregates to form nano-sized droplets, and migrates towards the external surfaces of the GMA-enriched P(S-GMA) particles and the internal bulk of the AA-enriched P(S-AA) particles. The nano-sized droplets function as in situ porogen, porous P(S-GMA) particles and P(S-AA) nanocapsules are produced when the porogen is removed. This novel, facile, one-step method with excellent controllability and reproducibility will inspire new strategies for creating hierarchical phase-separated polymeric particles with various structures by simply altering the species and ratio of comonomers. The drug loading and release experiments on the porous particles and nanocapsules demonstrate that the release of doxorubicin hydrochloride is very slow in weakly basic environment and quick in weakly acidic environment, which enables the porous particles and nanocapsules with promising potential in drug delivery applications.
  相似文献   
94.
95.
96.
Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.  相似文献   
97.
本文采用光泽度仪对漆膜的60°镜面光泽进行了测量,对产生测量不确定度的因素进行了分析,并对其A类和B类不确定度进行了分别评定,最终获得其测量结果的扩展不确定度。  相似文献   
98.
The evolution of the dislocation density induced by the nanomachining process dominates the plastic deformation behaviors of materials, thus affecting the mechanical properties significantly. However, a challenging topic related to how to establish an accurate model for predicting the dislocation density based on the limited simulations and experiments arises due to the complicated thermal–mechanical coupling mechanism during the machining process. Herein, a multistage method integrating machine learning, physics, and high-throughput atomic simulation is proposed to investigate the effect of cutting speed on the dislocation behavior in polycrystal copper. Compared with the traditional one-step machine learning method, the constraint of physical features effectively improves the accuracy and generalization ability of the model. The results indicate that the dislocation behaviors depend on the competition between the cutting force and temperature. In the low-cutting speed, the predominated role of the cutting temperature leads to a rapid decline of the dislocation density. In contrast, the dislocation density tends to be stable under a high-speed cutting process due to the dynamic balance between the effects of the cutting force and temperature. Notably, the proposed strategy provides a new and universal framework to design the machining parameters to obtain high-quality products.  相似文献   
99.
Inspired by the process of self-healing of biological damage, high technology materials with self-healing and self-repairing mechanisms have been developed for high reliability and long lifetime. Therefore, the reliability modeling on intelligent systems with healing performance has become a research hotspot. Based on the diversity of healing mechanisms, this paper proposes a two-phase reliability model method on self-healing and self-repairing systems. Impacts of environments, shock loads, self-healing, and self-repairing mechanisms are taken into account in this novel model. Besides, system lifetime and some reliability indexes under two shock models are derived, respectively. Moreover, Monte Carlo simulations are conducted to verify the accuracy of reliability under two models. Finally, an engineering case of metallized film capacitor is provided to illustrate the effectiveness and applicability of the proposed models by comparing numerical results and simulation results.  相似文献   
100.
This study introduces delay independent decentralized guaranteed cost control design method based on two controller structures for nonlinear uncertain interconnected large scale systems with time delays. First, a set of equivalent Takagi-Sugeno (T-S) fuzzy models are extended to represent the systems. Then a decentralized state-feedback guaranteed cost performance controller is proposed for the fuzzy systems. Based on delay independent Lyapunov functional approach, some sufficient conditions for the existence of the controller can be cast into the feasible problem of LMIs irrespective of the sizes of the time delays so that the system can be asymptotically stabilized for all considered uncertainties whose sizes are not larger than their bounds. Finally, the minimizing approach is proposed to search the suboptimal upper bound value of guaranteed cost function. Moreover, the corresponding conditions are extended into the generalized dynamic output-feedback close-loop system. Finally, the better control performances of the proposed methods are shown by the simulation examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号