首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1065篇
  免费   92篇
  国内免费   14篇
电工技术   29篇
综合类   11篇
化学工业   317篇
金属工艺   52篇
机械仪表   40篇
建筑科学   50篇
矿业工程   4篇
能源动力   91篇
轻工业   94篇
水利工程   12篇
石油天然气   20篇
无线电   72篇
一般工业技术   228篇
冶金工业   26篇
原子能技术   12篇
自动化技术   113篇
  2024年   4篇
  2023年   17篇
  2022年   29篇
  2021年   77篇
  2020年   64篇
  2019年   52篇
  2018年   83篇
  2017年   78篇
  2016年   84篇
  2015年   42篇
  2014年   67篇
  2013年   117篇
  2012年   78篇
  2011年   92篇
  2010年   80篇
  2009年   52篇
  2008年   36篇
  2007年   27篇
  2006年   14篇
  2005年   9篇
  2004年   1篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   12篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有1171条查询结果,搜索用时 31 毫秒
51.
Ni-TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were prepared by electrodeposition in a Ni plating bath containing TiO2 nanoparticles to be codeposited. The influences of the TiO2 nanoparticle concentration in the plating bath, the current density and the stirring rate on the composition of nanocomposite coatings were investigated. The composition of coatings was studied by using energy dispersive X-ray system (EDX). The wear behavior of the pure Ni and Ni-TiO2 nanocomposite coatings were evaluated by a pin-on-disc tribometer. The corrosion performance of coatings in 0.5 M NaCl, 1 M NaOH and 1 M HNO3 as corrosive solutions was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods (EIS). The microhardness and wear resistance of the nanocomposite coatings increase with increasing of TiO2 nanoparticle content in the coating. With increasing of TiO2 nanoparticle content in the coating, the polarization resistance increases, the corrosion current decreases and the corrosion potential shifts to more positive values.  相似文献   
52.
In grazing systems dung is an important source of nutrients which can increase soil fertility and contribute to nutrient cycling through increased pasture production. Changes in soil chemical and biological properties and pasture production were measured below and around dung pads created in the field. Almost 65% of the total dung P remained after 45 days and about two-thirds of the pad fresh weight had disappeared in that time, indicating that physical degradation is the mechanism of incorporation of dung P. All the pads bar one were completely degraded by 112 days. At this time, soil pH and EC increased under dung pads as did Olsen extractable inorganic phosphorus (Pi) and total phosphorus (Pt), with these changes observed at 0–5 and 5–10 cm depths. Bicarbonate extractable soil organic phosphorus (Po) was not affected by dung and the observed differences in soil Po:Pi ratios were largely influenced by the substantial addition of inorganic P from dung. Dung increased the P buffering capacity of the 0–5 cm soil samples collected at the end of the experiment, potentially contributing to the increased extractable soil P measured under the pads. Dung also changed soil properties in 0–10 cm samples with increases in soil pH, EC, Colwell P and Colwell K recorded even long after the dung had completely disappeared. Microbial biomass carbon increased under dung pads in the 0–10 cm soil samples in the first 45 days after pads were applied. Total herbage production and ryegrass biomass increased significantly under and around the pads by 112 days after dung was applied. The botanical composition changed significantly with increased ryegrass contents observed, but only under the dung pads. This experiment demonstrated that increases in pasture around dung pads in the field are not solely due to animal rejection.  相似文献   
53.
54.
A time‐dependent multiphysics, multiphase model is proposed and fully developed here to describe carbon nanotubes (CNTs) fabrication using chemical vapor deposition (CVD). The fully integrated model accounts for chemical reaction as well as fluid, heat, and mass transport phenomena. The feed components for the CVD process are methane (CH4), as the primary carbon source, and hydrogen (H2). Numerous simulations are performed for a wide range of fabrication temperatures (973.15–1273.15 K) as well as different CH4 (500–1000 sccm) and H2 (250–750 sccm) flow rates. The effect of temperature, total flow rate, and feed mixture ratio on CNTs growth rate as well as the effect of amorphous carbon formation on the final product are calculated and compared with experimental results. The outcomes from this study provide a fundamental understanding and basis for the design of an efficient CNT fabrication process that is capable of producing a high yield of CNTs, with a minimum amount of amorphous carbon. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
55.
Au/TiO2/Ti electrodes were prepared by galvanic deposition of gold particles from an acidic bath containing KAu(CN)2 in the presence of a citrate buffer onto TiO2 nanotubes layer on titanium substrates. Titanium oxide nanotubes were fabricated by anodizing titanium foil in a DMSO fluoride-containing electrolyte. The morphology and surface characteristics of Au/TiO2/Ti electrodes were investigated using scanning electron microscopy and energy-dispersive X-ray, respectively. The results indicated that gold particles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of about 40–80 nm diameters. The electro-catalytic behavior of Au/TiO2/Ti electrodes for the dopamine electro-oxidation was studied by cyclic voltammetry and differential pulse voltammetry. The results showed that Au/TiO2/Ti electrodes exhibit a considerably higher electro-catalytic activity toward the oxidation of dopamine. The catalytic oxidation peak current showed a linear dependence on dopamine concentration and a linear calibration curve was obtained in the concentration range of 0.5–2.5 mM of dopamine.  相似文献   
56.
The symmetrical and asymmetrical electrodes made of Mg were studied in 0.1-M NaCl electrolyte adjusted at pH 12. The statistical and wavelet methods were employed for analyzing the electrochemical current noise (ECN) signals. The asymmetric configuration was used for electrochemical detection of filiform corrosion on Mg electrode. The real time scale of the dominant transients of the asymmetric electrodes was detected on the basis of the maximum peak in the SDPS plots. The SDPS values of the real time scale crystals of the ECN signals resulting from asymmetrical electrodes increased with the increase in immersion time due to the onset of filiform corrosion.  相似文献   
57.
Researchers have examined different approaches to improve damage tolerance of discontinuously reinforced aluminum (DRA). In this study, three-layer DRA laminates containing two exterior layers of Al6061-15 vol.% SiCp and an interlayer of Al1050 were fabricated by hot roll bonding. Interfacial adhesion between the layers was controlled by means of rolling stain. The results of shear test revealed that, the bonding strength of laminates was influenced by number of rolling passes. Considering this effect, the role of interfacial bonding on the toughness of laminates was studied under three-point bending in the crack divider orientation. The quasi-static toughness of the laminates was greater than that of the monolithic DRA. Plastic deformation of the ductile interlayer and interfacial delamination were found as the major sources of energy absorption in this fracture process. It was shown that interfacial adhesion in these laminate does not alter the initiation energy in quasi-static test. Propagation energy under same loading condition, however, illustrated significant sensitivity to the interfacial bonding. The results of the current study reveal that improving the interfacial adhesion by means of rolling strain eliminates the ease of plastic deformation of the ductile interlayer and thus reduces the contribution of this mechanism in quasi-static toughness of the laminate.  相似文献   
58.
59.
The International Journal of Advanced Manufacturing Technology - Unstable environment of industrial systems is a source of various uncertainties in production features such as processing times....  相似文献   
60.
Over the last few decades, numerous analytical and/or numerical expressions have been developed for predicting the permeability of a fibrous medium. These expressions, however, are not accurate in predicting the permeability of media made up of nanofibers. This is because the previous expressions were mostly developed for coarse fibers, where using the so-called no-slip velocity boundary condition at the fiber surface is quite justified. Removing the no-slip velocity restriction in this work, we study the effect of slip flow on the permeability of fibrous materials made up of nanofibers. This has been accomplished by generating a large series of 3-D virtual geometries that resemble the microstructure of a nanofiber (e.g., electrospun) material. Stokes flow equations are solved numerically in the void space between the nanofibers, with the slip flow boundary condition developed based on the Maxwell first order model. The influence of fiber diameter and solid volume fraction (SVF) on the media's permeability is studied, and used to establish a correction factor for the existing permeability expressions when used for nanofiber media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号