首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91182篇
  免费   7691篇
  国内免费   4109篇
电工技术   5721篇
技术理论   2篇
综合类   5822篇
化学工业   14100篇
金属工艺   5039篇
机械仪表   5248篇
建筑科学   6782篇
矿业工程   1890篇
能源动力   2658篇
轻工业   7136篇
水利工程   1816篇
石油天然气   3897篇
武器工业   680篇
无线电   12067篇
一般工业技术   11704篇
冶金工业   4656篇
原子能技术   1034篇
自动化技术   12730篇
  2024年   378篇
  2023年   1378篇
  2022年   2602篇
  2021年   3608篇
  2020年   2523篇
  2019年   2115篇
  2018年   2382篇
  2017年   2823篇
  2016年   2475篇
  2015年   3423篇
  2014年   4474篇
  2013年   5695篇
  2012年   6088篇
  2011年   6785篇
  2010年   5882篇
  2009年   5681篇
  2008年   5623篇
  2007年   5373篇
  2006年   5144篇
  2005年   4198篇
  2004年   2862篇
  2003年   2357篇
  2002年   2377篇
  2001年   2034篇
  2000年   1933篇
  1999年   1942篇
  1998年   1835篇
  1997年   1583篇
  1996年   1419篇
  1995年   1189篇
  1994年   927篇
  1993年   765篇
  1992年   609篇
  1991年   462篇
  1990年   389篇
  1989年   299篇
  1988年   253篇
  1987年   182篇
  1986年   152篇
  1985年   139篇
  1984年   100篇
  1983年   75篇
  1982年   68篇
  1981年   59篇
  1980年   51篇
  1979年   35篇
  1978年   32篇
  1977年   32篇
  1976年   54篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   
992.
In this research, bulk graphitic carbon nitride (g‐C3N4) is exfoliated and transferred to the carbon nitride nanosheets (CNNSs), which are then coupled with MIL‐88B(Fe) to form the hybrid. From the results of the powder X‐ray diffraction, scanning electronic microscopy and thermogravimetric analysis, it is found that the doping of CNNSs on the surface of MIL‐88(Fe) could maintain the basic structure of MIL‐88B(Fe), and the smaller dimension of CNNSs might influence the crystallization process of metal‐organic frameworks (MOFs) compared to bulk g‐C3N4. Besides, the effects of the CNNSs incorporation on photocatalysis are also investigated. Through the photoluminescence spectra, electrochemical measurements, and photocatalytic experiments, the hybrid containing 6% CNNSs is certified to possess the highest catalytic activity to degrade methylene blue and reduce Cr(VI) under visible light. The improvement of the photocatalytic performance can be attributed to the matched energy level which favors the formation of the heterojunctions. Besides, it promotes the charge migration such that the contact between MOFs and CNNSs is more intimate, which can be inferred from the electronic microscopy images. Finally, a possible photocatalytic mechanism is put forward by the relative calculation and the employment of the scavengers to trap the active species.  相似文献   
993.
Synthesizing ultrathin 2D metal–organic framework nanosheets in high yields has received increasing research interest but remains a great challenge. In this work, ultrathin zirconium‐porphyrinic metal–organic framework (MOF) nanosheets with thickness down to ≈1.5 nm are synthesized through a pseudoassembly–disassembly strategy. Owing to the their unique properties originating from their ultrathin thickness and highly exposed active sites, the as‐prepared ultrathin nanosheets exhibit far superior photocatalysis performance compared to the corresponding bulk MOF. This work highlights new opportunities in designing ultrathin MOF nanosheets and paves the way to expand the potential applications of MOFs.  相似文献   
994.
Converting ubiquitous environmental energy into electric power holds tremendous social and financial interests. Traditional energy harvesters and converters are limited by the specific materials and complex configuration of devices. Herein, it is presented that electric power can be directly produced from pristine graphene oxide (GO) without any pretreatment or additives once encountering the water vapor, which will generate an open‐circuit‐voltage of up to 0.4–0.7 V and a short‐circuit‐current‐density of 2–25 µA cm?2 on a single piece of GO film. This phenomenon results from the directional movement of charged hydrogen ions through the GO film. The present work demonstrates and provides an extremely simple method for electric energy generation, which offers more applications of graphene‐based materials in green energy converting field.  相似文献   
995.
996.
997.
Because of the excellent mechanical properties of 34CrNiMo6 steel, it is widely used in high-value components. Many conventional approaches to strengthening-steels typically involve the loss of useful ductility. In this study, 34CrNiMo6 Steel having high strength and ductility is produced by laser solid forming (LSF) with a quenching-tempering (QT) treatment. Tempering of bainite is mainly by solid phase transformation in the previous LSF layers during the LSF process. The stable microstructure of LSF consists of ferrite and fine carbides. The microstructure transfers to tempered sorbite after heat-treatment. The tensile properties of the LSF steel meet those of the wrought standard. The UTS and elongation of LSF sample at 858 MPa, 19.2%, respectively, are greater than those of the wrought. The QT treatment enhanced the ultimate tensile strength and yield strength of the LSF sample. The ultimate tensile strength, yield strength, reduction in area, and elongation of the LSF+QT sample at 980 MPa, 916 MPa, 58.9%, and 13.9%, respectively, are greater than those of the wrought standard. The yield strength of the LSF+QT sample is approximately 1.27 times that of the wrought. The LSF samples failed in a ductile fracture mode, while the LSF+QT samples showed mixed-mode failure. The defects have only a small effect on the tensile properties owing to the excellent ductility of the LSF sample.  相似文献   
998.
The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)2/CNs hybrid achieves a large capacitance of 2,218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10,000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices.
  相似文献   
999.
In this work, the numerical simulations and electromagnetic riveting (EMR) experiments were conducted to investigate microstructure evolution and the forming mechanism of adiabatic shear bands (ASBs). And the effects of rivet dies on microstructure distributions in formed heads and mechanical properties of riveted structures were systematically explored. The impact velocity and deformation distribution results demonstrated that the proposed numerical method was accurate and reliable. The simulation results showed the slope angle of rivet dies notably affected the plastic flow of materials, and then determined the microstructure distribution in formed heads. The combined effects of inhomogeneous plastic flow and thermal softening were accounted for the forming of ASBs. The formed heads had two obvious ASBs (upper and lower ASB) for the 40° rivet die and flat rivet die. The formed heads only had the lower ASB and no clear upper for the 60° rivet die and 80° rivet die. The pull-out test results showed that the specific rivet die could improve the mechanical properties of the EMR joints, which contribute to the engineering applications of EMR riveted structures.  相似文献   
1000.
Two-dimensional (2D) materials have attracted enormous attention due to their functional applications in energy storage. In this work, a low-temperature molten-salt chemical exfoliation methodology is developed for producing free-standing 2D mesoporous Si through deintercalation of CaSi2 in excess molten AlCl3 at 195 °C. The average dimension of these sheets is 1.5 μm, and the thickness of a single sheet is approximately 10 nm. The as-prepared 2D Si has a Brunauer–Emmett–Teller surface area of 154 m2·g?1 and an average pore size of 5.87 nm. With this unique structure, the 2D Si exhibits superior Li-storage performance, including a reversible capacity of 2,974 mA·h·g?1 at 0.2 C, reversible capacities of 2,162, 1,947, and 1,527 mA·h·g?1 at 0.8, 2, and 5 C after 200 cycles, and a capacity retention of 357 mA·h·g?1 even at 30 C (90 A·g?1).
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号