首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
电工技术   1篇
化学工业   33篇
机械仪表   7篇
建筑科学   2篇
能源动力   2篇
轻工业   4篇
石油天然气   5篇
无线电   9篇
一般工业技术   18篇
自动化技术   7篇
  2024年   1篇
  2023年   1篇
  2022年   10篇
  2021年   13篇
  2020年   8篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
31.
32.
33.
WC based and yttria stabilized zirconia doped (13 vol%) cermets with different metal binders (Co, Ni or Fe) have been successfully produced and tested for performance in erosive media (silica abrasive particles; particle velocity of 80 ms−1 and impact angles of 30° and 90°). An increase in fracture toughness and erosion resistance was shown to be influenced by tetragonal zirconia transformability. Wear performance of the newly developed cermets is found to be highly dependent on sintering conditions.  相似文献   
34.
The paper proposes a hierarchical untestable stuck-at fault identification method for non-scan synchronous sequential circuits. The method is based on deriving, minimizing and solving test path constraints for modules embedded into Register-Transfer Level (RTL) designs. First, an RTL test pattern generator is applied in order to extract the set of all possible test path constraints for a module under test. Then, the constraints are minimized using an SMT solver Z3 and a logic minimization tool ESPRESSO. Finally, a constraint-driven deterministic test pattern generator is run providing hierarchical test generation and untestability proof in sequential circuits. We show by experiments that the method is capable of quickly proving a large number of untestable faults obtaining higher fault efficiency than achievable by a state-of-the-art commercial ATPG. As a side effect, our study shows that traditional bottom-up test generation based on symbolic test environment generation at RTL is too optimistic due to the fact that propagation constraints are ignored.  相似文献   
35.
In this study, interactions of Fe3O4 magnetic nanoparticles with serum albumin biomolecules in aqueous solutions were considered. The studies were conducted with the laser correlation spectroscopy and optical analysis of dehydrated films. It was shown that the addition of magnetite to an albumin solution at low concentrations of up to 10−6 g/L led to the formation of aggregates with sizes of up to 300 nm in the liquid phase and an increase in the number of spiral structures in the dehydrated films, which indicated an increase in their stability. With a further increase in the magnetite concentration in the solution (from 10−4 g/L), the magnetic particles stuck together and to albumin, thus forming aggregates with sizes larger than 1000 nm. At the same time, the formation of morphological structures in molecular films was disturbed, and a characteristic decrease in their stability occurred. Most stable films were formed at low concentrations of magnetic nanoparticles (less than 10−4 g/L) when small albumin–magnetic nanoparticle aggregates were formed. These results are important for characterizing the interaction processes of biomolecules with magnetic nanoparticles and can be useful for predicting the stability of biomolecular films with the inclusion of magnetite particles.  相似文献   
36.
The relative abundance of two main Abeta-peptide types with different lengths, Aβ40 and Aβ42, determines the severity of the Alzheimer’s disease progression. However, the factors responsible for different behavior patterns of these peptides in the amyloidogenesis process remain unknown. In this comprehensive study, new evidence on Aβ40 and Aβ42 amyloid polymorphism was obtained using a wide range of experimental approaches, including custom-designed approaches. We have for the first time determined the number of modes of thioflavin T (ThT) binding to Aβ40 and Aβ42 fibrils and their binding parameters using a specially developed approach based on the use of equilibrium microdialysis, which makes it possible to distinguish between the concentration of the injected dye and the concentration of dye bound to fibrils. The binding sites of one of these modes located at the junction of adjacent fibrillar filaments were predicted by molecular modeling techniques. We assumed that the sites of the additional mode of ThT-Aβ42 amyloid binding observed experimentally (which are not found in the case of Aβ40 fibrils) are localized in amyloid clots, and the number of these sites could be used for estimation of the level of fiber clustering. We have shown the high tendency of Aβ42 fibers to form large clots compared to Aβ40 fibrils. It is probable that this largely determines the high resistance of Aβ42 amyloids to destabilizing effects (denaturants, ionic detergents, ultrasonication) and their explicit cytotoxic effect, which we have shown. Remarkably, cross-seeding of Aβ40 fibrillogenesis using the preformed Aβ42 fibrils changes the morphology and increases the stability and cytotoxicity of Aβ40 fibrils. The differences in the tendency to cluster and resistance to external factors of Aβ40 and Aβ42 fibrils revealed here may be related to the distinct role they play in the deposition of amyloids and, therefore, differences in pathogenicity in Alzheimer’s disease.  相似文献   
37.
Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system.  相似文献   
38.
39.
The theory of guided waves in metal-dielectric planar multilayer structures is applied to reduce the loss and maximize optical nonlinearity for efficient terahertz-field generation in a surface electromagnetic wave by femtosecond laser pulses confined in a (chi)((2)) nonlinear planar waveguide. For typical parameters of thin-film polymer waveguides and metal-dielectric interfaces, the optimal size of the (chi)((2)) waveguide core providing the maximum efficiency of terahertz plasmon-field generation is shown to be less than the wavelength of the optical pump field.  相似文献   
40.
Multi‐valued logic (MVL) computing, which uses more than three logical states, is a promising future technology for handling huge amounts of data in the forthcoming “big data” era. The feasibility of MVL computing depends on the development of new concept devices/circuits beyond the complementary metal oxide semiconductor (CMOS) technology. This is because many CMOS devices are required to implement basic MVL functions, such as multilevel NOT, AND, and OR. In this study, a novel MVL device is reported with a complementarily controllable potential well, featuring the negative differential transconductance (NDT) phenomenon. This NDT device implemented on the WS2–graphene–WSe2 van der Waals heterostructure is evolved to a double‐NDT device operating on the basis of two consecutive NDT phenomena via structural engineering and parallel device configuration. This double‐NDT device is intensively analyzed via atomic force microscopy, kelvin probe force microscopy, Raman spectroscopy, and temperature‐dependent electrical measurement to gain a detailed understanding of its operating mechanism. Finally, the operation of a quaternary inverter configured with the double‐peak NDT device and a p‐channel transistor through Cadence circuit simulation is theoretically demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号