Due to air turbulence, large areas of coal will fall when the special coal-transportation trains pass the tunnel exits and entrances. Aiming at the problems of low efficiency and high cost of manual cleaning for long distance coal cleaning in the tunnel, a new railway tunnel fallen coal dust collection device which was composed of a main conveying coal feeding pipe and multiple branch pipes of coal suction was designed. It was used to clean the small particles and lightweight railway tunnel fallen coal. Firstly, the gas-solid two-phase flow model based on the Euler-Lagrange approach for the design of the main conveying coal feeding pipe was established in the coal conveying pipelines. Secondly, the effect of the coal particles' incident angle and multiple branch pipe spacing on the main coal conveying pipe flow field, which was based on Fluent finite element simulation software, was studied. What was more, the optimal angle of incidence and the optimal value of the number of branch coal suction pipe, which was installed on the main conveying pipe, were analyzed. Finally, the finite element simulation was verified by field test. Simulation and experimental results showed that it was more conducive to the railway tunnel fallen coal transportation when coal particles' incident angle was less than 45° and the branch pipe spacing was in the vicinity of 750 mm. For that when incident angle was less than 45°, the main conveying coal pipe pressure-drop became weaker and particle flow could obtain large horizontal transport velocity. And when the branch pipe spacing was in the vicinity of 750 mm, the horizontal transport velocity had a smaller fluctuation range and the transportation of coal was larger than that of the other groups. The research results are of great significance to improve the structure of the main conveying coal pipe, increase the efficiency of tunnel coal conveying and optimize the railway tunnel coal dust collection device. 相似文献
The homogeneous incorporation of heteroatoms into two-dimensional C nanostructures, which leads to an increased chemical reactivity and electrical conductivity as well as enhanced synergistic catalysis as a conductive matrix to disperse and encapsulate active nanocatalysts, is highly attractive and quite challenging. In this study, by using the natural and cheap hydrotropic amino acid proline—which has remarkably high solubility in water and a desirable N content of ~12.2 wt.%—as a C precursor pyrolyzed in the presence of a cubic KCl template, we developed a facile protocol for the large-scale production of N-doped C nanosheets with a hierarchically porous structure in a homogeneous dispersion. With concomitantly encapsulated and evenly spread Fe2O3 nanoparticles surrounded by two protective ultrathin layers of inner Fe3C and outer onion-like C, the resulting N-doped graphitic C nanosheet hybrids (Fe2O3@Fe3C-NGCNs) exhibited a very high Li-storage capacity and excellent rate capability with a reliable and prolonged cycle life. A reversible capacity as high as 857 mAh•g–1 at a current density of 100 mA•g–1 was observed even after 100 cycles. The capacity retention at a current density 10 times higher—1,000 mA•g–1—reached 680 mAh•g–1, which is 79% of that at 100 mA•g–1, indicating that the hybrids are promising as anodes for advanced Li-ion batteries. The results highlight the importance of the heteroatomic dopant modification of the NGCNs host with tailored electronic and crystalline structures for competitive Li-storage features.
Electric conductive and microwave absorbing material PANI/Ni/CF was prepared by in situ polymerization of polyaniline on the surface of nickel-coated carbon fiber (Ni/CF). The morphologies and structures of CF, Ni/CF, PANI and PANI/Ni/CF were characterized by scanning electron microscope and X-ray diffraction. Results show that the CF was wrapped tightly around the nickel layer, and the Ni/CF was coated by PANI. Measurement of four probes resistance tester indicates that the electrical conductivity of PANI/Ni/CF was great improved compared with PANI and PANI/CF. Vibrating sample magnetometry shows that the magnetic saturation intensity of Ni/CF and PANI/Ni/CF was 13.8 and 2.3 emu/g, respectively. According to the vector network analyzer, the microwave absorbing properties of PANI/Ni/CF were better than those of PANI and PANI/CF, and its minimum loss value is ?12.4 dB at 8.8 GHz. 相似文献
The self-assembly of peptidyl virus-like nanovesicles (pVLNs) composed of highly ordered peptide bilayer membranes that encapsulate the small interfering RNA (siRNA) is reported. The targeting and enzyme-responsive sequences on the bilayer's surface allow the pVLNs to enter cancer cells with high efficiency and control the release of genetic drugs in response to the subcellular environment. By transforming its structure in response to the highly expressed enzyme matrix metalloproteinase 7 (MMP-7) in cancer cells, it helps the siRNA escape from the lysosomes, resulting in a final silencing efficiency of 92%. Moreover, the pVLNs can serve as reconfigurable “Trojan horse” by transforming into membranes triggered by the MMP-7 and disrupting the cytoplasmic structure, thereby achieving synergistic anticancer effects and 96% cancer cell mortality with little damage to normal cells. The pVLNs benefit from their biocompatibility, targeting, and enzyme responsiveness, making them a promising platform for gene therapy and anticancer therapy. 相似文献