首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  国内免费   13篇
电工技术   1篇
机械仪表   1篇
无线电   15篇
一般工业技术   1篇
原子能技术   1篇
自动化技术   2篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
排序方式: 共有21条查询结果,搜索用时 140 毫秒
11.
提出一种基于扩频机制的数字图像水印算法。用伪随机序列作为扩频码,对原始水印信息进行周期延拓扩频和加密,在考虑人眼视觉特性的基础上,确定扩频水印在平稳小波变换域的嵌入位置和强度,扩频序列的选取决定了所选用的小波变换域最大系数的个数以及水印的密钥序列。实验结果表明,该算法具有较强的鲁棒性。  相似文献   
12.
柔性高效Ⅲ-Ⅴ族多结太阳电池正在被开发、应用于无人机、可穿戴设备和空间能源等领域.采用MOCVD技术在Ga As衬底上制备太阳电池外延层, 之后通过低温键合和外延层剥离方法将外延层转移到柔性衬底上.通过外延层剥离设备设计和大量参数优化实验, 实现了GaAs太阳电池结构从四英寸砷化镓晶圆上的有效分离, 且不产生缺陷并保持原有的性能.近期, 在50μm聚酰亚胺薄膜上制备的30 cm2大面积柔性GaInP/Ga As/InGaAs三结太阳电池实现了31. 5%的转换效率 (AM0光谱) , 其中开路电压3. 01 V, 短路电流密度16. 8 mA/cm2, 填充因子0. 845.由于采用了轻质的聚酰亚胺材料, 所得到的柔性太阳电池面密度仅为168. 5 g/m2, 比功率高达2 530 W/kg.  相似文献   
13.
为考察柔性薄膜GaInP/GaAs/InGaAs倒赝型三结(IMM3J)太阳电池的抗辐照性能,本文对其进行了1、3、5 MeV高能质子辐照。SRIM模拟结果表明,1、3、5 MeV质子辐照在IMM3J电池中造成均匀的位移损伤。光特性(LIV)结果表明,开路电压(Voc)、短路电流(Isc)和最大输出功率(Pmax)与质子注量呈对数退化规律。通过非电离能量损失(NIEL)将不同能量质子的注量转化为位移损伤剂量(DDD),结果显示,Voc和Pmax与DDD呈对数退化规律,而Isc遵循两种不同的退化规律。光谱响应测试证明,GaInP子电池具有优异的抗辐照性能,3个子电池中InGaAs(10 eV)子电池的抗辐照性能最差。  相似文献   
14.
An Al0.13GalnP sub-cell used as the top cell in the next generation of high efficiency multi-junction solar cells is fabricated. An efficiency of 10.04% with 1457.3 mV in Voc and 11.9 mA/cm2 in Isc was obtained. QE comparison was carried out to verify the influence of an O-related defect introduced by the high Al-content materials on the cell performance during MOCVD growth. Hetero-structures are employed to confirm the origin of the decreasing short circuit current density compared to a GalnP single junction solar cell. An effective method to improve the performance of broadband solar cells by increasing Isc with a cost of Voc was proposed.  相似文献   
15.
GaInP and AlGaInP solar cells were grown by metal organic chemical vapor deposition (MOCVD), and theoretical analysis demonstrated that hetero-interface recombination velocity plays an important role in the optimizing of cell performance, especially the interface between base layer and back surface field (BSF). Measurements including lattice-matched growth and pseudo-BSF were taken to optimize BSF design. Significant improvement of Voc in GaInP and AlGaInP solar cells imply that the measures we took are effective and promising for performance improvement in the next generation high efficiency solar cells.  相似文献   
16.
Ⅲ-Ⅴ族晶格失配多结太阳电池是实现高效太阳电池的主要途径之一,但面临晶格失配材料的高质量生长及其所导致的子电池光电转换效率下降的难题。重点针对晶格失配子电池结构中的(AlGa)InAs缓冲层开展台阶层厚度优化研究,设计了150、200和250 nm三组不同台阶层厚度的缓冲层结构,并完成三组样品的外延生长实验。通过材料测试和子电池电性能测试,系统分析了台阶层厚度对In0.58Ga0.42As材料外延生长质量和子电池电性能的影响。获得了晶格弛豫度为96.71%的In0.58Ga0.42As子电池材料,制备的子电池开路电压达到205.10 mV。在此基础上,结合GaInP/GaAs/In0.3Ga0.7As三结电池研制了晶格失配四结薄膜太阳电池,其光电转换效率达到32.41%(AM0,25℃)。  相似文献   
17.
采用Zn3N2热氧化法在直流磁控溅射设备上制备了掺氮Zn0薄膜(ZnO:N),研究了不同退火温度对样品结构和光电特性的影响.X射线衍射谱(XRD)结果表明,Zn3N2在600℃以上退火即可转变为Zn0:N薄膜.X射线光电子能谱(XPS)发现,在热氧化法制备的ZnO:N薄膜中,存在两种与N相关的结构,分别是N原子替代O(受主)和N2分子替代O(施主),这两种结构分别于不同的退火温度下存在,并且700℃下退火的样品在理论上具有最高的空穴浓度,这一点也由霍尔测量结果得到证实.同时,从低温PL光谱中观察到了与N.受主有关的导带到受主(FA)和施主-受主对(DAP)的跃迁,并由此计算出热氧化法制备的ZnO:N薄膜中的N.受主能级位置.  相似文献   
18.
目前,市场上可抽出式高压开关柜无法确认断路器手车梅花触头与静触头的对中度是否良好。文中提出了以无刷直流电机作为底盘车驱动电机,利用电枢电流数据实现手车梅花触头和静触头对中度诊断的方法。首先,为确定电枢电流的影响因素,分析无刷直流电机数学模型并仿真验证;利用具有不同偏心距离的静触头代替试验台原静触头,模拟不同程度的对中偏差;其次,以均值滤波和高斯拟合处理啮入阶段曲线,提取拟合函数参数A、xmax和啮入阶段电流均值为曲线特征,训练BP神经网络模型用于对中度诊断;最后,采集新数据,对所述方法进行试验验证。结果表明,所述方法对手车梅花触头和静触头对中度识别精度高。该方法为断路器手车梅花触头对中度诊断提供了一种思路。  相似文献   
19.
ZnO/SiC/Si异质结的光电转换特性   总被引:1,自引:1,他引:0  
我们利用直流溅射制备了一系列的n-ZnO/n-SiC/p-Si和n-ZnO/p-Si异质结,通过研究他们的结构、I-V曲线、光生伏特效应和光响应谱。并且研究了他们的光电转换特性。发现n-ZnO/n-SiC/p-Si异质结的光电转换效率大约是n-ZnO/p-Si异质结的四倍。n-ZnO/n-SiC/p-Si异质结的光响应曲线也比n-ZnO/p-Si异质结强,表明n-ZnO/p-Si异质结加入3C-SiC中间层后光响应明显增强。在表面光电流谱中n-ZnO/n-SiC/p-Si异质结观察到两个拐点,而n-ZnO/p-Si异质结只观察到一个。通过以上研究可以看出3C-SiC在n-ZnO/n-SiC/p-Si异质结的光电转换中起了很大的作用.  相似文献   
20.
研制了应用于下一代高效多结太阳电池中的定电池的 Al0.13GaInP子电池,其实验室效率为10.04%,开路电压为1457.3mV,短路电流为11.9mA。使用量子效率来验证MOVPE生长过程中涉及高Al组分引起的O缺陷对电池性能的影响。相比GaInP单结电池,Al0.13GaInP电池的短路电流下降地较为厉害,实验中生长了GaInP/Al0.13GaInP异质结电池来分析其原因,因此也提出了以牺牲部分开路电压来提升短路电流的一种有效提升电池性能的方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号