排序方式: 共有47条查询结果,搜索用时 18 毫秒
11.
12.
13.
光学频率梳作为精确的光谱工具,在光学原子钟、激光频率计量、精密光谱测量等领域具有广泛的应用。提出了一种基于空间光腔的布里渊光学频率梳振荡器,利用金刚石晶体作为增益介质,在1μm波长双通泵浦的拉曼腔中有效激发了受激布里渊散射和四波混频效应,获得了中心波长为1.2μm、稳态功率为101 W、梳齿间隔为71 GHz的布里渊频率梳输出,对应的最高阶次为23、带宽达1.55 THz。该功率为已知布里渊频率梳的最高功率,相较于微腔结构提升了4个数量级以上。所提方案为实现具有特殊波长的连续波高功率光学频率梳提供了新的技术路径。 相似文献
14.
15.
具有高平均功率的皮秒级脉冲激光在工业加工、空间探测等领域具有重要的应用。但是锁模产生的皮秒种子光因脉冲宽度窄、单脉冲能量低,难以直接通过传统的行波放大实现功率的高效提升,因此也限制了输出脉冲的非线性频率转换效率。文中通过光栅啁啾脉冲展宽器和狭缝,将中心波长为1030 nm、脉冲宽度7 ps、重复频率52 MHz的光纤锁模种子光脉冲宽度展宽至32 ps,且将其光谱宽度控制在1.1 nm,利用两个空气包层光子晶体光纤放大器将功率放大至190 W。最后通过温度相位匹配LiB3O5 晶体实现了平均功率为103.1 W的绿光皮秒脉冲输出,光束质量因子1.17,二次谐波转换效率54.3%。 相似文献
16.
具有不同波长的高亮度激光在国防、工业、生命科学等诸多领域发挥着重要作用。但是受限于现有工作物质固有的光谱特性和热物性,传统粒子数反转激光器的波长和输出功率难以兼顾,甚至导致激光在功率提升时光束亮度不升反降。为了克服该难题,近几年人们利用非线性光学技术对光束净化开展了大量研究,即将粒子数反转激光器输出的低光束质量的光束,通过受激拉曼或受激布里渊散射等效应转变为高光束质量激光输出。其中,金刚石晶体以其高拉曼增益系数、极高的热导率和极宽的光谱透过范围等性质,在实现高效率拉曼波长转换的同时展现出优异的光束亮度增强特性,为人们获得高功率、高亮度激光光束提供了新的技术路径。文中对基于金刚石的一阶和级联拉曼转换的光束亮度增强研究进行了综述,并围绕其潜在的应用进行了探讨。 相似文献
17.
为了提高LD抽运脉冲微片激光器的输出性能和系统的集成度,采用龙格-库塔法对包含自发辐射与抽运速率的被动调Q速率方程进行了数值求解,结合被动调Q激光器输出参量的表达式对LD端面抽运的键合Nd∶YAG/Cr4+∶YAG微片激光器输出参量进行了数值仿真。结果表明,利用长度1mm/1.5mm的键合Nd∶YAG/Cr4+∶YAG晶体作为增益介质,当Cr4+∶YAG的初始透过率为75%、输出镜的透过率为30%、抽运光和腔内基模光半径均为100μm时,能够在抽运功率为4.5W的条件下实现平均功率0.7W、脉冲宽度174ps、重复频率16.1kHz的理论激光输出。该研究对被动调Q微片激光器的参量优化和应用具有理论指导意义。 相似文献
18.
19.
亚纳秒激光因其对光电器件的损伤优于纳秒激光和飞秒激光,而被广泛应用于光电对抗领域。然而,在常规水冷条件下实现输出数百赫兹焦耳级亚纳秒激光还面临较大的挑战。笔者课题组面向国防重大需求,结合端面泵浦微片晶体百皮秒激光产生技术和多程多级板条激光放大技术,对板条激光器的放大性能进行大量的实验研究,并提出了温控双端泵浦技术,弥补双端泵浦结构的缺陷。实现板条激光器单脉冲能量952 mJ,重复频率500 Hz的激光输出,这将为光电对抗系统所需的高重频大能量激光提供优质光源。 相似文献
20.
点云是3维图像的一种特殊数据形式, 正逐渐成为3维图像信息处理的研究热点; 点云分割是点云数据处理的重要步骤, 对算法的结果有直接影响; 基于3维图像几何特征的点云分割算法结构简洁、运算结果稳定性强, 且易于调整, 在实际应用中占有主要地位。对最近几年涌现出来的基于几何特征的点云分割方法进行了梳理, 根据每种方法的理论基础和应用特点将算法归纳为基于边缘检测、表面特征和模型拟合的点云分割方法, 分析了各类算法的特点和存在的主要问题, 并进行了算法性能比较, 分析了影响点云分割算法效率的主要因素, 最后对未来的发展趋势进行了展望。 相似文献