排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
基于矩阵因式分解的协同过滤推荐模型具有很高的推荐精度和可扩展性,而其中大多数都是基于串行训练过程构造参数的,如能将其训练过程并行化,能进一步提高可扩展性.为解决上述问题,该文提出一种基于规范矩阵因式分解的协同过滤推荐(RMF)模型的并行改进(P-RMF)模型.P-RMF 模型应用交替随机梯度下降法取代随机梯度下降法训练参数,从而消除用户特征和项目特征在训练过程中的相互依赖,实现训练过程的并行化改进.实验表明,对比现有同类模型,P-RMF 模型在求解协同过滤推荐问题时,具有更快的速度和可扩展性. 相似文献
12.
金融风暴为原本蓬勃发展的世界经济蒙上一层阴影。为了使经济发展尽快企稳,各国纷纷出台经济刺激计划,很多国家加大基础设施建设投资力度,拉动内需。 相似文献
13.
个性化服务技术为门户平台上的兴趣挖掘研究带来了新的挑战,如何隐式地获取门户用户兴趣行为以及发现兴趣迁移模式是其中的重要课题.在对门户个性化兴趣映射描述的基础上,提出了一种独立于门户平台的含隐私保护的门户个性化兴趣获取机制,可实现不同兴趣访问行为的隐式获取以及操作语义分析,并采用兴趣扩展规则描述方式进行了隐私保护.结合门户个性化兴趣影响以及兴趣目的预测,给出了带有门户个性化兴趣描述的隐Markov模型扩展,可用于发现不同用户的门户个性化兴趣迁移模式.最后通过验证实验给出了有效性和可行性的结论分析. 相似文献
14.
15.
通过相似度支持度优化基于K近邻的协同过滤算法 总被引:19,自引:0,他引:19
个性化推荐系统能基于用户个人兴趣为用户提供定制信息.此类系统通常使用协同过滤技术实现,其中一种广泛使用的经典模型是基于用户评分相似度的k近邻模型.使用k近邻模型需要预先计算出用户或者项目的k个最近邻居,k值过大时会导致计算量过大而影响推荐产生的实时性,而k值过小则会导致推荐精度下降.为解决此问题,该文中提出了一种新的最近邻度量--相似度支持度.基于相似度支持度,该文提出了数种能够在保持推荐精度和密度的前提下维持合理规模的k近邻的策略.在真实大规模数据集上的实验结果表明,相比传统算法,该文提出的策略能够在保证推荐精度的前提下大幅降低计算复杂度. 相似文献