首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   8篇
  国内免费   34篇
综合类   2篇
化学工业   2篇
金属工艺   62篇
机械仪表   8篇
能源动力   4篇
石油天然气   1篇
武器工业   2篇
无线电   37篇
一般工业技术   21篇
冶金工业   7篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   11篇
  2012年   5篇
  2011年   5篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   6篇
  2005年   15篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
31.
随着矿井深度的增加,对锚杆支护强韧性的要求越来越高,为了应对这一情况,需要研发出更高强度的锚杆钢。利用锚杆钢研究了轧制工艺、冷却工艺与珠光体、铁素体相比例,析出相析出行为及力学性能的关系。研究结果表明,在中轧后、精轧前采用适当水冷+回复段处理的复合工艺可使晶粒更细小、组织更均匀。对超高强度锚杆钢进行热压缩变形试验,由热模拟试验结果确定相转变温度为Ac1=737 ℃、Ac3=886 ℃。最终筛选出入精轧温度为810 ℃、回复段温度为800 ℃时,可获得的晶粒尺寸达4 μm,珠光体体积分数为66.8%,铁素体体积分数为33.2%,珠光体片层间距达200 nm;另外调整V、Cr、N等析出以提高锚杆钢的强韧性,较低的回复温度有利于细小、弥散、V(C/N)析出相的析出,V(C/N)的析出可进一步改善锚杆钢的力学性能。由该控轧控冷工艺轧制的锚杆钢屈服强度为780 MPa、抗拉强度为930 MPa、硬度为291HV、伸长率为20%。  相似文献   
32.
采用基于第一性原理的平面波赝势方法,研究了压力对γ'-Ni_3Pt电子结构和力学性能的影响。本研究在0~50 GPa压力范围内每隔5 GPa对γ'-Ni_3Pt进行一次加压计算。计算结果表明:0 GPa压力下的平衡晶格常数与他人的实验研究和理论计算结果十分一致;不同压力下的总态密度和分波态密度表明化合物表现出金属特性,且随着压力的增大,体系稳定性先增强后减弱;此外,根据Voigt-Reuss-Hill(VRH)法计算了Ni_3Pt的体积模量(B)、剪切模量(G)、杨氏模量(E)和泊松比(v),发现随着压力的增大,Ni_3Pt晶体的硬度提高,延性和塑性增强。研究表明,压力对Ni_3Pt电子结构和力学性能的影响很大。  相似文献   
33.
以内配碳酸钙高碳铬铁粉为研究对象,对不同加热方式下固相脱碳的动力学行为和活化能进行研究。内配碳酸钙高碳铬铁粉在微波加热场和常规加热场分别加热到900、1000、1100和1200℃,并分别保温脱碳0、20、40和60 min。结果表明,随着脱碳温度的升高和脱碳保温时间的延长,微波加热场和常规加热场中的脱碳物料的脱碳率都提高,在相同的脱碳温度和脱碳保温时间下,微波加热场中脱碳物料的脱碳率远高于常规加热场中的。微波加热场中固相脱碳反应的表观活化能为109.76 kJ/mol;常规加热场中固相脱碳反应的表观活化能为169.65kJ/mol。微波加热场能改善固相脱碳的动力学条件,提高内配碳酸钙高碳铬铁粉固相脱碳反应速率,促进碳在高碳铬铁粉中的扩散,降低脱碳反应的活化能。  相似文献   
34.
采用基于密度泛函理论的第一性原理方法,计算了B2型FeAl金属间化合物的Fe8Al8和Fe8XAl7(X=Cr,Mo和W)超晶胞系统总能量、结合能、晶格常数、弹性常数、态密度和差分电荷密度,研究了合金元素对B2型FeAl金属间化合物晶体结构、电子结构和力学性能的影响。根据系统驰豫和几何优化确定了合金系统的稳定晶体结构;计算结果表明:随着加入元素原子半径的增大,合金的晶格常数相应增大,Fe8WAl7的晶格常数最大,Fe8CrAl7的晶格常数最小。Cr、Mo和W的加入均提升了FeAl的体模量、剪切模量和弹性模量以及改善了FeAl的脆性,其中Mo的加入对FeAl的脆性改善作用最大。根据电子结构和Cauchy压力参数计算结果的分析,FeAl金属间化合物为脆性相,主要原因是其电子结构中Fe的s、p、d态与Al的s、p态存在电子轨道杂化,呈明显的共价键特征。合金元素改善FeAl脆性的微观机理为:合金元素原子以d轨道电子为主参与了FeAl金属间化合物的电子杂化,增强了FeAl合金的结合能力;合金元素原子的加入使电荷转移量增加,增强了原子间离子键成分的作用,提高了FeAl合金的稳定性。  相似文献   
35.
5d过渡金属Hf、Ta、W、Re、Ir被广泛地应用于第4、5代镍基单晶高温合金中,但对于其机理却没有系统的理论研究。采用基于密度泛函理论(density functional theory)的第一性原理平面波超软赝势方法研究5d过渡金属Hf、Ta、W、Re、Ir掺杂镍基单晶高温合金γ′-Ni3Al相前后系统的晶格常数、形成热、结合能、态密度、差分电荷密度及电荷布局。计算结果表明:5d过渡金属Hf、Ta、W、Re、Ir掺杂Ni3Al系统后有优先占据Al原子位置的倾向,且与周围的Ni 3d电子和Al 3p电子发生强烈的轨道杂化,使电子被束缚,离域性变小,峰变窄;掺杂前系统中主要是Ni原子与最近的Al原子之间的共价键作用,掺杂后系统中主要是Ni原子与最近的X原子(Hf、Ta、W、Re、Ir)之间的共价键作用,且随原子序数的增大共价键逐渐增强。  相似文献   
36.
采用基于密度泛函理论的CASTEP程序包,计算了不同压力下Al2Ca相的结构、弹性与电子性能。计算所得0 GPa下Al2Ca的晶格参数与实验和其他理论值相吻合。结果表明:随压力增大,Al2Ca相的体模量B、剪切模量G、杨氏模量E增大,材料的硬度增大;且压力低于30 GPa时,Al2Ca为脆性相,之后随压力的增大,材料呈延性,增大压力提高了材料的塑性和延展性。态密度计算结果表明:在压力0~50 GPa下,随压力增加,结构稳定性变差,但其结构仍然是稳定的,没有发生相转变。  相似文献   
37.
采用基于密度泛函理论(DFT)的第一性原理超软赝势平面波方法,研究了Al、Zn对Mg-Li合金中α-Mg/β-Li相界断裂强度的影响。体系结合能的计算结果表明Al、Zn固溶于Mg-Li合金后其结构更为稳定;从所得断裂功、态密度以及电荷密度的结果来看,Al更容易固溶于α-Mg固溶体中,对断裂强度的增强作用优于占位于α-Mg/β-Li相界面;Zn占位于α、β晶内、相界面的倾向性不明显,但均可使体系的断裂强度提高;Al、Zn复合合金化后使体系稳定性得到提高,断裂强度等得到进一步的改善。环境敏感镶嵌能的计算结果表明Zn比Al更容易偏聚于相界面;Al、Zn合金化对体系稳定性、断裂强度产生的影响主要是由于Al-3s3p轨道电子、Zn 3d轨道电子贡献产生了新的成键峰,以及Mg 2p轨道及Li 2s轨道电子在费米能级处共同作用的结果。  相似文献   
38.
采用基于密度泛函理论的第一性原理方法研究压力对Ni-Mo二元化合物Ni_4Mo、Ni_3Mo(DOa)、Ni_3Mo(DO_(22))、Ni_2Mo力学性能和电子结构的影响。研究表明:0~40 GPa压力范围内,随着压力的增大,相对体积V/V_0不断减小且趋势减缓;形成热均为负值,且随着压力的增大形成热减小,说明增大压力可提高化合物的合金化能力;体积模量B、剪切模量G、杨氏模量E、拉梅常数λ、硬度H的计算结果表明压力可提高4种化合物的抗变形、抗压缩能力及硬度。另外,B/G和泊松比v表明所有化合物均为延性和塑性的;进行态密度的分析,阐明增大压力可提高4种化合物的稳定性及硬度。  相似文献   
39.
基于第一性原理赝势平面波方法研究了Cr加入Ni-Al合金后对Ni3Al几何和电子结构的影响,计算了不同强化相的晶胞总能量、形成热、结合能、费米能级下的成键电子数以及态密度、电荷密度,从不同角度出发,研究了不同强化相的稳定性.计算结果表明Ni-Al合金中添加Cr,Cr优先置换Al位且析出的新强化相较原强化相Ni3Al更为稳定,原因在于含Cr的新强化相在低能级处强烈成键,提高了其稳定性,其中Ni6Cr2最为稳定,但只在590℃下稳定存在,Ni5AlCr2、Ni6AlCr、Ni4Al2Cr2、Ni5Al2Cr稳定性依次降低.  相似文献   
40.
孙咸  马成勇  韩培德 《焊接》2001,(8):11-15
采用水中收集熔滴、光学显微分析、电子扫描能谱分析、计算机图像分析及平板堆焊等试验方法,分别研究了大理石、萤石对不锈钢焊条熔熵过渡行为,以及它们对熔滴中非金属夹杂物及焊缝中气孔的影响。结果表明焊缝和熔滴中的非金属夹杂物呈圆球形,它们是熔滴反应区化学反应的产物,属“内生”性质;药皮中大理石含量增大时,熔滴尺寸与熔滴中夹杂物含量的波动变化存在对应关系,焊条工艺性变差,焊缝中气孔敏感性未减小;药皮中氟化稀土和萤石比值增大,熔滴细化,熔滴中夹杂物含量增大,焊条工艺性能有所改善,焊缝中气孔倾向未减小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号