首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   7篇
  国内免费   42篇
电工技术   1篇
综合类   5篇
化学工业   1篇
机械仪表   1篇
轻工业   4篇
水利工程   6篇
无线电   55篇
一般工业技术   4篇
冶金工业   2篇
自动化技术   4篇
  2024年   1篇
  2023年   4篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2000年   1篇
排序方式: 共有83条查询结果,搜索用时 343 毫秒
41.
For a further improvement of the noise performance in A1GaN/GaN HEMTs, reducing the relatively high gate leakage current is a key issue. In this paper, an experiment was carried out to demonstrate that one method during the device fabrication process can lower the noise. Two samples were treated differently after gate recess etching: one sample was annealed before metal deposition and the other sample was left as it is. From a comparison of their Ig-Vg characteristics, a conclusion could be drawn that the annealing can effectively reduce the gate leakage current. The etching plasma-induced damage removal or reduction after annealing is considered to be the main factor responsible for it. Evidence is given to prove that annealing can increase the Schottky barrier height. A noise model was used to verify that the annealing of the gate recess before the metal deposition is really effective to improve the noise performance of AIGaN/GaN HEMTs.  相似文献   
42.
在合同自由原则下,版权转让中作者的弱势地位和新作品价值的不确定性常导致版权转让不公平。从续展制度到终止制度,美国版权法却始终保障作者从其创作成果中获取充分收益。作为一项不能由作者预先有效放弃版权的规定,版权终止制度以强制性规范的形式实现了矫正正义。就我国版权转让来说,适当限制合同自由,确保获酬权是版权改革之题中应有之义,以弥补作者弱势地位之不足,维护社会公平。  相似文献   
43.
肖洋  张一川  张昇  郑英奎  雷天民  魏珂 《半导体技术》2018,43(6):432-436,467
采用一系列不同栅长和结构的T型栅器件来研究凹栅槽结构抑制短沟道效应和提高频率特性的作用.随着栅长不断缩短,短沟道效应逐渐明显,栅长从300 nm缩短至100 nm时,亚阈值摆幅逐渐增大,栅对沟道载流子的控制变弱,且器件出现软夹断现象.凹栅槽结构可以降低器件的亚阈值接幅,提高开关比,栅长100 nm常规结构器件的亚阈值摆幅为140 mV/dec,开关比为106,而凹栅槽结构器件的亚阈值摆幅下降为95 mV/dec,开关比增大为107,凹栅槽结构明显抑制了短沟道效应.在漏源电压为20 V时,100 nm栅长的凹栅槽结构器件的截止频率和最高振荡频率达到了65.9和191 GHz,同常规结构相比,分别提高了5.78%和4.49%.由于凹栅槽结构缩短了栅金属到二维电子气(2DEG)沟道的间距,增大了纵横比,所以能够改善器件的频率特性.  相似文献   
44.
研究了源漏整体刻蚀欧姆接触结构对AlGaN/GaN高电子迁移率晶体管(HEMT)的欧姆接触电阻和金属电极表面形貌的影响.利用传输线模型(TLM)对样品的电学性能进行测试,使用原子力显微镜(AFM)对样品的表面形貌进行表征,通过透射电子显微镜(TEM)和X射线能谱仪(EDS)对样品的剖面微结构和界面反应进行表征与分析.实验结果显示,采用Ti/Al/Ni/Au(20 nm/120 nm/45 nm/55 nm)金属和源漏整体刻蚀欧姆接触结构,在合金温度870 c℃,升温20 s,退火50 s条件下,欧姆接触电阻最低为0.13 Ω·mm,方块电阻为363.14 Ω/□,比接触电阻率为4.54×10-7Ω·cm2,形成了良好的欧姆接触,降低了器件的导通电阻.  相似文献   
45.
报道了生长在蓝宝石衬底上的AlGaN/GaN HEMT器件的制造工艺以及在室温下器件的性能.器件的栅长为1.0μm,源漏间距为4.0μm.器件的最大电流密度达到1000mA/mm,最大跨导高达198mS/mm,转移特性曲线表现出增益带宽较宽的特点.同时由所测得的S参数推出栅长为1.0μm器件的截止频率(fT)和最高振荡频率(fmax)分别为18.7GHz和19.1GHz.  相似文献   
46.
比较了空气桥跨细栅和空气桥跨栅总线两种源连接结构的1 mm AlGaN/GaN HEMTs器件的特性,对两种结构的管芯进行了等效电路参数提取.测试了两种布局方式下的不同源场板结构器件的射频以及功率性能,比较分析表明,空气桥跨细栅的源连接方式由于有效地降低了栅漏电容以及栅源电容,比空气桥跨栅总线源连接的器件能取得更好的频率特性以及功率特性.  相似文献   
47.
本文研究了栅帽、栅源间距对AlGaN/GaN HEMT性能的影响。基于研究结果得出了优化高频功率AlGaN/GaN HEMT栅结构的方法。缩小栅场板可以有效提高器件的增益、截止频率(ft)、最大震荡频率(fmax)。通过减小栅场板长度,栅长0.35 器件的ft达到了30GHz、fmax达到了80GHz。采用tao型栅(栅帽偏向源侧)或者增加栅金属厚度还可以进一步优化 。缩小栅源的距离可以提高饱和漏电流和击穿电压,从而提高器件的输出功率。  相似文献   
48.
本文报道了具有2.4um源漏间距的AlGaN/GaN HEMTs。这是目前利用国内材料和工艺制作的最小源漏间距的AlGaN/GaN HEMTs。本文还详细比较了源漏间距2.4um和4um器件的电特性。相比之下,2.4um源漏间距AlGaN/GaN HEMTs的漏电流、跨导、增益、输出功率和效率明显提高,更具意义的是器件的最大震荡频率有较大提高。  相似文献   
49.
This paper describes the performance of AlGaN/GaN HEMTs with 2.4μm source-drain spacing.So far these are the smallest source-drain spacing AlGaN/GaN HEMTs which have been implemented with a domestic wafer and domestic process.This paper also compares their performance with that of 4μm source-drain spacing devices. The former exhibit higher drain current,higher gain,and higher efficiency.It is especially significant that the maximum frequency of oscillation noticeably increased.  相似文献   
50.
提出了一种适用于低电压工作的毫米波AlN/GaN MIS-HEMT器件,开展了材料外延结构的设计,在SiC衬底上生长了AlN/GaN外延材料。基于此材料开展了器件制作,优化了高温快速退火工艺,获得良好的欧姆接触电阻。对所制备的器件进行直流测试,结果显示,电流输出能力为2.4 A/mm,跨导极值为518 mS/mm,小信号ft达到85 GHz,fmax大于141 GHz。在5G毫米波段28 GHz频率点测试了大信号特性,当VDS =3 V时,输出功率密度为0.55 W/mm,功率附加效率(PAE)为40.1%;当VDS = 6 V时,输出功率密度为1.6 W/mm,PAE达到47.8%。该器件具有低压毫米波应用的潜力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号