排序方式: 共有67条查询结果,搜索用时 15 毫秒
61.
设计并实现了一种采用微机械制造(MEMS)技术加工的D波段矩形波导膜片滤波器.采用有限元仿真软件HFSS分析了滤波器内腔镀膜厚度、粗糙度以及感性膜片厚度对滤波器主要性能的影响.采用MEMS深刻蚀工艺(DRIE)成功加工出了滤波器主体结构.通过完成结构深刻蚀、金属电镀和键合等关键工艺,首次制造出了D波段MEMS波导滤波器.样品测试结果为插入损耗0.4~0.7 dB,中心频率(140±3)GHz,带外抑制为≥18 dB,样品主要技术指标与设计值符合. 相似文献
62.
63.
64.
介绍了一种应用于W-LAN系统的5.8 GHz InGaP/GaAs HBT MMIC功率放大器。该功率放大器采用了自适应线性化偏置电路来改善线性度和效率,同时偏置电路中的温度补偿电路可以抑制直流工作点随温度的变化,采用RC稳定网络使放大器在较宽频带内具有绝对稳定性。在单独供电3.6 V电压情况下,功率放大器的增益为26 dB,1 dB压缩点处输出功率为26.4 dBm,功率附加效率(PAE)为25%。三阶交调系数(IMD3)在输出功率为26.4 dBm时为-19 dBc,输出功率为20 dBm时低于-38 dBc,在1 dB压缩点处偏移频率为20 MHz时邻道功率比(ACPR)值为-31 dBc。 相似文献
65.
针对现有微机械(Micromechanical,也称MEMS)圆盘谐振器串联动态电阻过大的问题,该文提出了电极移动法,将其它MEMS器件的可调性能引入MEMS圆盘谐振器,在现有最窄缝隙工艺条件下实现了电极-圆盘缝隙的进一步缩减,降低了串联动态电阻。该文给出了悬置电极的设计方法,推导了电极移动后有效缝隙宽度的表达式,提出了可防电极接触短路的微小圆孔状凹陷设计,并给出了加入凹陷后的有效缝隙宽度表达式。通过ANSYS仿真结果可知,分别加载2.10 V和66.38 V偏置电压后,0.1 m和1 m电极-圆盘缝隙缩小为0.0016 m和0.01 m。对于0.1~1.1 m缝隙谐振器,串联动态电阻变为原来的10-8倍以下。 相似文献
66.
该文提出应用微加工(Micromachining)技术设计制作太赫兹6阶并联电感耦合波导带通滤波器的方法。立足于现有工艺条件,通过分析加工因素对滤波器电磁性能的影响,将工艺和设计参数相互折中达到优化设计的目的,避免因工艺原因造成的器件性能急剧恶化,最终得到插入损耗小、可靠性好、可集成的太赫兹滤波器。采用微加工深刻蚀(ICP)、溅射电镀金属、键合等工艺步骤,最终制作完成的单个微加工滤波器划片后体积为24.0 mm×5.0 mm×1.66 mm。应用可调测试夹具固定微加工滤波器,通过功率计测试其功率衰减,得到其中心频率为141.5 GHz,3dB带宽为10.6%,中心频率处功率衰减小于1 dB,验证了工艺方法的有效性。 相似文献
67.
对薄膜支撑空腔型微屏蔽传输线进行分析,提出微屏蔽传输线的物理结构。为了验证微屏蔽传输线在毫米波应用的优势,利用类比平行耦合微带线滤波器的方法设计了一种4阶切比雪夫三线对称结构微屏蔽线滤波器。通过对该微屏蔽腔体结构进行HFSS仿真,得到中心频率35 GHz的宽带滤波器,带宽15 GHz,带内插损小于0.5 dB,带外抑制>40 dB@53 GHz,器件尺寸8.24 mm×1.5 mm×0.65 mm。该设计为基于平面传输线的滤波器在毫米波频段的实现提供了一种可行的方法。 相似文献