首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94273篇
  免费   1903篇
  国内免费   2859篇
电工技术   3195篇
综合类   2229篇
化学工业   9534篇
金属工艺   3250篇
机械仪表   5507篇
建筑科学   6402篇
矿业工程   3472篇
能源动力   1034篇
轻工业   15804篇
水利工程   2506篇
石油天然气   2469篇
武器工业   615篇
无线电   10298篇
一般工业技术   23275篇
冶金工业   2363篇
原子能技术   1027篇
自动化技术   6055篇
  2023年   826篇
  2022年   900篇
  2021年   884篇
  2020年   737篇
  2019年   815篇
  2018年   762篇
  2017年   440篇
  2016年   563篇
  2015年   771篇
  2014年   1717篇
  2013年   1292篇
  2012年   7402篇
  2011年   9061篇
  2010年   2731篇
  2009年   2006篇
  2008年   6588篇
  2007年   6297篇
  2006年   5490篇
  2005年   4964篇
  2004年   4218篇
  2003年   3676篇
  2002年   3305篇
  2001年   2952篇
  2000年   2917篇
  1999年   2113篇
  1998年   1557篇
  1997年   1539篇
  1996年   1498篇
  1995年   1398篇
  1994年   1405篇
  1993年   1048篇
  1992年   1236篇
  1991年   1264篇
  1990年   1278篇
  1989年   1186篇
  1988年   739篇
  1987年   898篇
  1986年   843篇
  1985年   832篇
  1984年   798篇
  1983年   744篇
  1982年   756篇
  1981年   669篇
  1980年   548篇
  1979年   404篇
  1976年   341篇
  1975年   366篇
  1974年   358篇
  1967年   367篇
  1965年   402篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Fructose-2,6-bisphosphatase (FBPase-2) is a switch between gluconeogenesis and glycolysis in the hepatic cells. The structural features required for inhibitory activity of FBPase-2 were unidentified; no leads are available for inhibiting this important enzyme. In this paper pharmacophore mapping, molecular docking methods were employed in a virtual screening strategy to identify leads for FBPase-2. A receptor based pharmacophore map was modeled which comprised of important interactions as observed in co-crystal of rat liver isozyme with the product inhibitor fructose-6-phosphate. The pharmacophore model was validated against two databases of best docked structural analogues of fructose-2,6-bisphosphate and fructose-6-phosphate. The query generated was submitted for flexible search of ligands in chemical databases, namely LeadQuest, Maybridge and NCI. The hits obtained were further screened by molecular docking using FlexX.  相似文献   
952.
953.
Peptidoglycan, a key constituent of bacterial cell walls, is currently the target of broad spectrum antibiotics and a new research field involves both design and synthesis of inhibitors of its biosynthesis. Most bacteria require either lysine, or its biosynthetic precursor, diaminopimelate (meso-DAP), as a component of the peptidoglycan layer of the cell wall. In this paper, molecular modelling studies were undertaken in order to shed light on the molecular basis of interaction between (2S,6S)-diaminopimelic acid (l,l-DAP) (1) with its target enzyme DAP-epimerase, since this is a key step in the lysine biosynthetic path leading to (2R,6S)-diaminopimelic acid (meso-DAP) (2). In particular, the docking of the ligand-enzyme complex was studied by means of MD simulations and DFT computations in order to ascertain the optimal structural requirements for the epimerization reaction. Molecular dynamics simulations clearly showed that the configuration of the distal carbon C6 of l,l-DAP is critical for complex formation since both amino and carboxylate groups are involved in Hbonding interactions with the active site residues. Furthermore, the interactions occurring between the functional groups bonded to the C2 and some residues of the binding cavity immobilize the ligand in a position appropriate for the epimerization reaction, i.e., exactly in the middle of the two catalytic residues Cys73 and Cys217 as confirmed by DFT quantum mechanical computation of the Michaelis complex. All this mechanistic information could be useful for the rational design of new potential antibiotic drugs effective as inhibitors of peptidoglycan biosynthesis.  相似文献   
954.
The dynamics of an ion-driven rotary nanomotor, mimicking the F(0) part of the ATPase biomolecular motor, in the presence, and absence, of an external electric field have been simulated via the application of the stochastic molecular dynamics (MD) method. The rotary motion of the proposed motor arises as a result of an ion gradient established between the outer and inner parts of the environment within which the motor is embedded. We show that the operation of this motor can be controlled by such parameters as the amount of the positive ions placed in the stator part of the motor, the density of the positive ions, and the strength and frequency of the applied electric field.  相似文献   
955.
To understand how antiviral drugs inhibit the replication of influenza A virus via the M2 ion channel, molecular dynamics simulations have been applied to the six possible protonation states of the M2 ion channel in free form and its complexes with two commercial drugs in a fully hydrated lipid bilayer. Among the six different states of free M2 tetramer, water density was present in the pore of the systems with mono-protonated, di-protonated at adjacent position, tri-protonated and tetra-protonated systems. In the presence of inhibitor, water density in the channel was considerably better reduced by rimantadine than amantadine, agreed well with the experimental IC(50) values. With the preferential position and orientation of the two drugs in all states, two mechanisms of action, where the drug binds to the opening pore and the histidine gate, were clearly explained, i.e., (i) inhibitor was detected to localize slightly closer to the histidine gate and can facilitate the orientation of His37 imidazole rings to lie in the close conformation and (ii) inhibitor acts as a blocker, binding at almost above the opening pore and interacts slightly with the three pore-lining residues, Leu26, Ala30 and Ser31. Here, the inhibitors were found to bind very weakly to the channel due to their allosteric hindrance while theirs side chains were strongly solvated.  相似文献   
956.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) on a series of agonists of thyroid hormone receptor beta (TRbeta), which may lead to safe therapies for non-thyroid disorders while avoiding the cardiac side effects. The reasonable q(2) (cross-validated) values 0.600 and 0.616 and non-cross-validated r(2) values of 0.974 and 0.974 were obtained for CoMFA and CoMSIA models for the training set compounds, respectively. The predictive ability of two models was validated using a test set of 12 molecules which gave predictive correlation coefficients (r(pred)(2)) of 0.688 and 0.674, respectively. The Lamarckian Genetic Algorithm (LGA) of AutoDock 4.0 was employed to explore the binding mode of the compound at the active site of TRbeta. The results not only lead to a better understanding of interactions between these agonists and the thyroid hormone receptor beta but also can provide us some useful information about the influence of structures on the activity which will be very useful for designing some new agonist with desired activity.  相似文献   
957.
The Plasmodium falciparum food vacuole (FV) is a lysosome-like organelle where erythrocyte hemoglobin digestion occurs. It is a favorite target in the development of antimalarials. We have used a tandem mass spectrometry approach to investigate the proteome of an FV-enriched fraction and identified 116 proteins. The electron microscopy analysis and the Western blot data showed that the major component of the fraction was the FV and, as expected, the majority of previously known FV markers were recovered. Of particular interest, several proteins involved in vesicle-mediated trafficking were identified, which are likely to play a key role in FV biogenesis and/or FV protein trafficking. Recovery of parasite surface proteins lends support to the cytostomal pathway of hemoglobin ingestion as a FV trafficking route. We have identified 32 proteins described as hypothetical in the databases. This insight into FV protein content provides new clues towards understanding the biological function of this organelle in P. falciparum.  相似文献   
958.
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.  相似文献   
959.
Primary torsion dystonia is an autosomal-dominantly inherited, neurodevelopmental movement disorder caused by a GAG deletion (ΔGAG) in the DYT1 gene, encoding torsinA. This mutation is responsible for approximately 70% of cases of early-onset primary torsion dystonia. The function of wildtype torsinA is still unknown, and it is unsolved how the deletion in the DYT1 gene contributes to the development of the disease. To better understand the molecular processes involved in torsinA pathology, we used genome-wide oligonucleotide microarrays to characterize gene expression patterns in the striatum of mouse models overexpressing the human wildtype and mutant torsinA. By this approach we were able to detect gene expression changes that seem to be specific for torsinA pathology. We found an impact of torsinA, independent from genotype, on vesicle trafficking, exocytosis, and neurotransmitter release in our mouse model. In addition, we were able to identify several new pathways and processes involved in the development of the nervous system that are affected by wildtype and mutant torsinA. Furthermore, we have striking evidence from our gene expression data that glutamate receptor mediated synaptic plasticity in the striatum is the affected underlying cellular process for impaired motor learning in human ΔGAG torsinA transgenic mice.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号