首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   29篇
  国内免费   2篇
电工技术   3篇
化学工业   140篇
金属工艺   9篇
机械仪表   19篇
建筑科学   6篇
能源动力   14篇
轻工业   7篇
武器工业   1篇
无线电   55篇
一般工业技术   138篇
冶金工业   15篇
原子能技术   14篇
自动化技术   84篇
  2023年   3篇
  2022年   14篇
  2021年   24篇
  2020年   8篇
  2019年   11篇
  2018年   20篇
  2017年   12篇
  2016年   21篇
  2015年   13篇
  2014年   25篇
  2013年   29篇
  2012年   30篇
  2011年   52篇
  2010年   28篇
  2009年   28篇
  2008年   27篇
  2007年   25篇
  2006年   22篇
  2005年   17篇
  2004年   17篇
  2003年   12篇
  2002年   21篇
  2001年   6篇
  2000年   5篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1968年   1篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
501.
The heterogeneous reactions between alkylamines and ammonium salts (ammonium sulfate and ammonium bisulfate) have been studied using a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) at 293 ± 2 K. The uptake of three alkylamines, i.e., monomethylamine, dimethylamine, and trimethylamine, on ammonium sulfate shows a displacement reaction of ammonium by aminium, evidenced by the release of ammonia monitored using protonated acetone dimer as the reagent ion. For the three alkylamines, the initial uptake coefficients (γ(0)) range from 2.6 × 10(-2) to 3.4 × 10(-2) and the steady-state uptake coefficients (γ(ss)) range from 6.0 × 10(-3) to 2.3 × 10(-4) and decrease as the number of methyl groups on the alkylamine increases. A different reaction mechanism is observed for the uptake of the three alkylamines on ammonium bisulfate, which is featured by an acid-base reaction (neutralization) with irreversible alkylamine loss and no ammonia generation and occurs at a rate limited by diffusion of gaseous alkylamines to the ammonium bisulfate surface. Our results reveal that the reactions between alkylamines and ammonium salts contribute to particle growth and alter the composition of ammonium sulfate and bisulfate aerosols in the atmosphere.  相似文献   
502.
A key factor to the implementation of devices with vertically aligned carbon nanofibers (VACNFs) is fundamental understanding of how to control fluctuations in the growth direction of the fibers. Here we demonstrate synthesis of VACNF on transparent and insulating substrates by continuous direct current (DC) plasma for realization of cellular interface suitable for transmission optical microscopy. To maintain continuous glow discharge above the substrate, a metal grid electrode layer (Cr) was deposited over silica with windows of exposed silica ranging in size from 200 μm to 1 mm. This electrode geometry allows for synthesis of VACNFs even within an insulating window. This observation and the observed trends in the alignment of nanofibers in the vicinity of grid electrodes have indicated that the alignment does not correspond to the direction of the electric field at the substrate level, contrary to previously proposed alignment mechanism. Computational modeling of the plasma with this grid cathode geometry has shown that nanofiber alignment trends follow calculated ion flux direction rather than electrical field. The new proposed alignment mechanism is that ion sputtering of the carbon film on a catalyst particle defines the growth direction of the nanofibers. With this development, fiber growth direction can be better manipulated through changes in ionic flux direction, opening the possibility for growth of nanofibers on substrates with unique geometries.  相似文献   
503.
Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self‐assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole‐injecting and electron‐injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well‐defined molecular monolayers.  相似文献   
504.
The virucidal activity of a series of cationic surfactants differing in the length and number of hydrophobic tails (at the same hydrophilic head) and the structure of the hydrophilic head (at the same length of the hydrophobic n-alkyl tail) was compared. It was shown that an increase in the length and number of hydrophobic tails, as well as the presence of a benzene ring in the surfactant molecule, enhance the virucidal activity of the surfactant against SARS-CoV-2. This may be due to the more pronounced ability of such surfactants to penetrate and destroy the phospholipid membrane of the virus. Among the cationic surfactants studied, didodecyldimethylammonium bromide was shown to be the most efficient as a disinfectant, its 50% effective concentration (EC50) being equal to 0.016 mM. Two surfactants (didodecyldimethylammonium bromide and benzalkonium chloride) can deactivate SARS-CoV-2 in as little as 5 s.  相似文献   
505.
Piezoresponse force microscopy (PFM) is used for investigation of the electromechanical behavior of the head-to-head (H-H) and tail-to-tail (T-T) domain walls on the non-polar surfaces of three uniaxial ferroelectric materials with different crystal structures: LiNbO3, Pb5Ge3O11, and ErMnO3. It is shown that, contrary to the common expectation that the domain walls should not exhibit any PFM response on the non-polar surface, an out-of-plane deformation of the crystal at the H-H and T-T domain walls occurs even in the absence of the out-of-plane polarization component due to a specific form of the piezoelectric tensor. In spite of their different symmetry, in all studied materials, the dominant contribution comes from the counteracting shear strains on both sides of the H-H and T-T domain walls. The finite element analysis approach that takes into account a contribution of all elements in the piezoelectric tensor, is applicable to any ferroelectric material and can be instrumental for getting a new insight into the coupling between the electromechanical and electronic properties of the charged ferroelectric domain walls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号