首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7019篇
  免费   407篇
  国内免费   6篇
电工技术   99篇
综合类   28篇
化学工业   1962篇
金属工艺   184篇
机械仪表   153篇
建筑科学   416篇
矿业工程   39篇
能源动力   248篇
轻工业   480篇
水利工程   42篇
石油天然气   5篇
无线电   609篇
一般工业技术   1485篇
冶金工业   322篇
原子能技术   44篇
自动化技术   1316篇
  2024年   14篇
  2023年   102篇
  2022年   152篇
  2021年   270篇
  2020年   187篇
  2019年   192篇
  2018年   191篇
  2017年   186篇
  2016年   283篇
  2015年   299篇
  2014年   353篇
  2013年   506篇
  2012年   476篇
  2011年   629篇
  2010年   414篇
  2009年   421篇
  2008年   405篇
  2007年   356篇
  2006年   279篇
  2005年   251篇
  2004年   192篇
  2003年   152篇
  2002年   151篇
  2001年   74篇
  2000年   100篇
  1999年   92篇
  1998年   87篇
  1997年   82篇
  1996年   95篇
  1995年   60篇
  1994年   53篇
  1993年   49篇
  1992年   49篇
  1991年   36篇
  1990年   22篇
  1989年   20篇
  1988年   18篇
  1987年   21篇
  1986年   14篇
  1985年   18篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   9篇
  1976年   5篇
  1975年   5篇
  1972年   5篇
  1967年   3篇
  1954年   3篇
排序方式: 共有7432条查询结果,搜索用时 0 毫秒
991.
Buried‐channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 105 cm2 V?1 s?1) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top‐gate of a dopant‐less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 1011cm?2, light effective mass (0.09me), and high effective g‐factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low‐disorder material platform for hybrid quantum technologies.  相似文献   
992.
Herein, a novel polymer‐templated strategy is described to obtain 2D nickel‐based MOF nanosheets using Ni(OH)2, squaric acid, and polyvinylpyrrolidone (PVP), where PVP has a dual role as a structure‐directing agent, as well as preventing agglomeration of the MOF nanosheets. Furthermore, a scalable method is developed to transform the 2D MOF sheets to Ni7S6/graphene nanosheet (GNS) heterobilayers by in situ sulfidation using thiourea as a sulfur source. The Ni7S6/GNS composite shows an excellent reversible capacity of 1010 mAh g?1 at 0.12 A g?1 with a Coulombic efficiency of 98% capacity retention. The electrochemical performance of the Ni7S6/GNS composite is superior not only to nickel sulfide/graphene‐based composites but also to other metal disulfide–based composite electrodes. Moreover, the Ni7S6/GNS anode exhibits excellent cycle stability (≈95% capacity retention after 2000 cycles). This outstanding electrochemical performance can be attributed to the synergistic effects of Ni7S6 and GNS, where GNS serves as a conducting matrix to support Ni7S6 nanosheets while Ni7S6 prevents restacking of GNS. This work opens up new opportunities in the design of novel functional heterostructures by hybridizing 2D MOF nanosheets with other 2D nanomaterials for electrochemical energy storage/conversion applications.  相似文献   
993.
In light‐emitting electrochemical cells (LECs), the position of the emission zone (EZ) is not predefined via a multilayer architecture design, but governed by a complex motion of electrical and ionic charges. As a result of the evolution of doped charge transport layers that enclose a dynamic intrinsic region until steady state is reached, the EZ is often dynamic during turn‐on. For thick sandwich polymer LECs, a continuous change of the emission color provides a direct visual indication of a moving EZ. Results from an optical and electrical analysis indicate that the intrinsic zone is narrow at early times, but starts to widen during operation, notably well before the electrical device optimum is reached. Results from numerical simulations demonstrate that the only precondition for this event to occur is that the mobilities of anions (μa) and cations (μc) are not equal, and the direction of the EZ shift dictates μc > μa. Quantitative ion profiles reveal that the displacement of ions stops when the intrinsic zone stabilizes, confirming the relation between ion movement and EZ shift. Finally, simulations indicate that the experimental current peak for constant‐voltage operation is intrinsic and the subsequent decay does not result from degradation, as commonly stated.  相似文献   
994.
Prolonged sitting is a risk factor for several diseases and the prevalence of worksite-based interventions such as sit-to-stand workstations is increasing. Although their impact on sedentary behaviour has been regularly investigated, the effect of working in alternating body postures on cognitive performance is unclear. To address this uncertainty, 45 students participated in a two-arm, randomised controlled cross-over trial under laboratory conditions. Subjects executed validated cognitive tests (working speed, reaction time, concentration performance) either in sitting or alternating working postures on two separate days (ClinicalTrials.gov Identifier: NCT02863731). MANOVA results showed no significant difference in cognitive performance between trials executed in alternating, standing or sitting postures. Perceived workload did not differ between sitting and alternating days. Repeated measures ANOVA revealed significant learning effects regarding concentration performance and working speed for both days. These results suggest that working posture did not affect cognitive performance in the short term.

Practitioner Summary: Prior reports indicated health-related benefits based on alternated (sit/stand) body postures. Nevertheless, their effect on cognitive performance is unknown. This randomised controlled trial showed that working in alternating body postures did not influence reaction time, concentration performance, working speed or workload perception in the short term.  相似文献   

995.
996.
Historic masonry buildings under earthquakes – Load‐bearing behaviour in contradiction to the currently applied methods of analysis The stability of historic masonry buildings must be guaranteed not only under normal conditions, but also during natural disasters. The seismic assessment of the masonry buildings of the Gründerzeit (1840–1918) in Vienna is a central topic in the qualitative and constructive assessment. Although masonry construction has been used for many centuries, the realistic evaluation of the load‐bearing behaviour is still a complex challenge. The methods of analysis according to current regulations are only insufficiently able to reflect the real load‐bearing behaviour and the possible activation of global failure mechanisms. As a result, the simplified verification is often difficult to calculate for many historic buildings, and questionable reinforcement measures are taken to compensate, even though the buildings have already experienced several earthquakes and survived most of them without damage. The present work deals with the approaches of current methods of analysis and aims to identify problem points and to compare them with time history analysis, which is supported by a powerful material model based on test series. It is shown that the conventional analysis for the historic masonry buildings without consideration of the interaction and load transfer effects as well as the characteristic construction methods only partially reflect the real load‐bearing behaviour. The work is intended to be a contribution to the technical expert discussions on the seismic safety of historic buildings and to stimulate the discussion on the formulation of realistic methods of analysis.  相似文献   
997.
998.
Additive manufacturing promises high flexibility and customized product design. Powder bed fusion processes use a laser to melt a polymer powder at predefined locations and iterate the scheme to build 3D objects. The design of flowable powders is a critical parameter for a successful fabrication process that currently limits the choice of available materials. Here, a bottom‐up process is introduced to fabricate tailored polymer‐ and composite supraparticles for powder‐based additive manufacturing processes by controlled aggregation of colloidal primary particles. These supraparticles exhibit a near‐spherical shape and tailored composition, morphology, and surface roughness. These parameters can be precisely controlled by the mixing and size ratio of the primary particles. Polystyrene/silica composite particles are chosen as a model system to establish structure–property relations connecting shape, morphology, and surface roughness to the adhesion within the powder, which is accessed by tensile strength measurements. The adhesive properties are then connected to powder flowability and it is shown that the resulting powders allow the formation of dense powder films with uniform coverage. Finally, successful powder bed fusion is demonstrated by producing macroscopic single layer specimens with uniform distribution of nanoscale silica additives.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号