全文获取类型
收费全文 | 6905篇 |
免费 | 403篇 |
国内免费 | 6篇 |
专业分类
电工技术 | 98篇 |
综合类 | 28篇 |
化学工业 | 1948篇 |
金属工艺 | 183篇 |
机械仪表 | 152篇 |
建筑科学 | 416篇 |
矿业工程 | 39篇 |
能源动力 | 243篇 |
轻工业 | 464篇 |
水利工程 | 42篇 |
石油天然气 | 5篇 |
无线电 | 602篇 |
一般工业技术 | 1477篇 |
冶金工业 | 278篇 |
原子能技术 | 38篇 |
自动化技术 | 1301篇 |
出版年
2024年 | 14篇 |
2023年 | 101篇 |
2022年 | 152篇 |
2021年 | 268篇 |
2020年 | 187篇 |
2019年 | 191篇 |
2018年 | 190篇 |
2017年 | 186篇 |
2016年 | 282篇 |
2015年 | 299篇 |
2014年 | 349篇 |
2013年 | 505篇 |
2012年 | 472篇 |
2011年 | 626篇 |
2010年 | 411篇 |
2009年 | 417篇 |
2008年 | 402篇 |
2007年 | 354篇 |
2006年 | 275篇 |
2005年 | 246篇 |
2004年 | 189篇 |
2003年 | 149篇 |
2002年 | 149篇 |
2001年 | 75篇 |
2000年 | 100篇 |
1999年 | 93篇 |
1998年 | 83篇 |
1997年 | 81篇 |
1996年 | 86篇 |
1995年 | 55篇 |
1994年 | 46篇 |
1993年 | 48篇 |
1992年 | 46篇 |
1991年 | 33篇 |
1990年 | 20篇 |
1989年 | 12篇 |
1988年 | 16篇 |
1987年 | 16篇 |
1986年 | 12篇 |
1985年 | 13篇 |
1984年 | 8篇 |
1983年 | 7篇 |
1982年 | 4篇 |
1981年 | 5篇 |
1980年 | 9篇 |
1976年 | 3篇 |
1975年 | 4篇 |
1972年 | 4篇 |
1959年 | 2篇 |
1954年 | 3篇 |
排序方式: 共有7314条查询结果,搜索用时 12 毫秒
91.
92.
Andreas Liess Alhama Arjona‐Esteban Astrid Kudzus Julius Albert Ana‐Maria Krause Aifeng Lv Matthias Stolte Klaus Meerholz Frank Würthner 《Advanced functional materials》2019,29(21)
Ultranarrowband organic photodiodes (OPDs) are demonstrated for thin film solid state materials composed of tightly packed dipolar merocyanine dyes. For these dyes the packing arrangement can be controlled by the bulkiness of the donor substituent, leading to either strong H‐ or strong J‐type exciton coupling in the interesting blue (H‐aggregate) and NIR (J‐aggregate) spectral ranges. Both bands are shown to arise from one single exciton band according to fluorescence measurements and are not just a mere consequence of different polymorphs within the same thin film. By fabrication of organic thin‐film transistors, these dyes are demonstrated to exhibit hole transport behavior in spin‐coated thin films. Moreover, when used as organic photodiodes in planar heterojunctions with C60 fullerene, they show wavelength‐selective photocurrents in the solid state with maximum external quantum efficiencies of up to 11% and ultranarrow bandwidths down to 30 nm. Thereby, narrowing the linewidths of optoelectronic functional materials by exciton coupling provides a powerful approach to produce ultranarrowband organic photodiodes. 相似文献
93.
Marco Sarcletti Dustin Vivod Tobias Luchs Tobias Rejek Luis Portilla Lukas Müller Hanno Dietrich Andreas Hirsch Dirk Zahn Marcus Halik 《Advanced functional materials》2019,29(15)
Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water. 相似文献
94.
Amir Sammak Diego Sabbagh Nico W. Hendrickx Mario Lodari Brian Paquelet Wuetz Alberto Tosato LaReine Yeoh Monica Bollani Michele Virgilio Markus Andreas Schubert Peter Zaumseil Giovanni Capellini Menno Veldhorst Giordano Scappucci 《Advanced functional materials》2019,29(14)
Buried‐channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 105 cm2 V?1 s?1) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top‐gate of a dopant‐less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 1011cm?2, light effective mass (0.09me), and high effective g‐factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low‐disorder material platform for hybrid quantum technologies. 相似文献
95.
Franks W Schenker I Schmutz P Hierlemann A 《IEEE transactions on bio-medical engineering》2005,52(7):1295-1302
A low electrode-electrolyte impedance interface is critical in the design of electrodes for biomedical applications. To design low-impedance interfaces a complete understanding of the physical processes contributing to the impedance is required. In this work a model describing these physical processes is validated and extended to quantify the effect of organic coatings and incubation time. Electrochemical impedance spectroscopy has been used to electrically characterize the interface for various electrode materials: platinum, platinum black, and titanium nitride; and varying electrode sizes: 1 cm2, and 900 microm2. An equivalent circuit model comprising an interface capacitance, shunted by a charge transfer resistance, in series with the solution resistance has been fitted to the experimental results. Theoretical equations have been used to calculate the interface capacitance impedance and the solution resistance, yielding results that correspond well with the fitted parameter values, thereby confirming the validity of the equations. The effect of incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance has been quantified using the model. This demonstrates the benefits of using this model in developing better understanding of the physical processes occurring at the interface in more complex, biomedically relevant situations. 相似文献
96.
Baumert M Baier V Truebner S Schirdewan A Voss A 《IEEE transactions on bio-medical engineering》2005,52(12):2112-2115
Autonomic cardiovascular control involves complex interactions of heart rate and blood pressure. In patients with dilated cardiomyopathy (DCM), this control is impaired and parameters for its quantification might be of prognostic importance. In this paper, we introduce methods based on joint symbolic dynamics (JSD) for the enhanced analysis of heart rate and blood pressure interactions. To assess the coarse-grained dynamics beat-to-beat changes of heart rate and blood pressure are encoded in symbol strings. Subsequently, the distribution properties of short symbol sequences (words) as well as the scaling properties of the whole symbol string are assessed. The comparison of joint symbolic heart rate and blood pressure dynamics in DCM (n = 75) with those in healthy controls (n = 75) showed significant changes. Both, the distribution of words and the scaling properties indicate a loss in heart rate dynamics associated with blood pressure regulation in DCM. In conclusion, the analyses of short- and long-term JSDs provide insights into complex physiological heart rate and blood pressure interactions and furthermore reveal patho-physiological cardiovascular control in DCM. 相似文献
97.
Adam Strak Andreas Gothenberg Hannu Tenhunen 《Analog Integrated Circuits and Signal Processing》2004,41(2-3):223-236
This paper presents a theoretical overview and analysis of clock jitter in a switched capacitor (SC) Sigma-Delta (ΣΔ) Analog-to-Digital Converter (ADC). We start by defining three different types of jitter effects and proceed to analyze their impact, both mathematically and by simulations. The main jitter assumption throughout this analysis is that it is stochastic white Gaussian noise. Using this assumption, the ΣΔ performance is characterized in terms of Signal-to-Jitter-Noise-Ratio (SJNR) for each jitter effect. Non-uniform sampling effects have, to some extent, been characterized in litterature (S.R. Norsworthy, R. Schreier and G.C. Temes, Delta-Sigma Data Converters—Theory, Design and Simulation, IEEE Press, New Jersey, 1997). However, varying phase-length effects are also a main focus in this work since they can have a significant impact on the total ADC performance depending on settling accuracy and characteristic. Furthermore, because SC circuits usually operate on a two-phase clock, jitter may give rise to a secondary effect, phase overlap, which does not appear when dealing with a single-phase clock. This effect severely degrades the resolution of a ΣΔ and therefore a thorough understanding of the interaction of jitter on the two phases is necessary. 相似文献
98.
Kevin P. Musselman Andrew Marin Andreas Wisnet Christina Scheu Judith L. MacManus‐Driscoll Lukas Schmidt‐Mende 《Advanced functional materials》2011,21(3):573-582
A novel buffering method is presented to improve the stability of zinc oxide processed in aqueous solutions. By buffering the aqueous solution with a suitable quantity of sacrificial zinc species, the dissolution of functional zinc oxide structures and the formation of unwanted impurities can be prevented. The method is demonstrated for ZnO films and nanowires processed in aqueous solutions used for the selective etching of mesoporous anodic alumina templates and the electrochemical deposition of Cu2O. In both cases, improved ZnO stability is observed with the buffering method. ZnO‐Cu2O heterojunction solar cells (bilayer and nanowire cells) synthesized using both traditional and buffered deposition methods are characterized by impedance spectroscopy and solar simulation measurements. Buffering the Cu2O deposition solution is found to reduce unwanted recombination at the heterojunction and improve the photovoltaic performance. 相似文献
99.
Antonios Alexiou Christos Bouras Andreas Papazois 《International Journal of Communication Systems》2011,24(5):607-627
3rd Generation Partnership Project (3GPP) has standardized the use of forward error correction (FEC) for the provision of reliable data transmission in the mobile multicast framework. This error control method inevitably adds a constant overhead in the transmitted data. However, it is so simple as to meet a prime objective for mobile multicast services; that is scalability to applications with thousands of receivers. In this paper, we present a study on the impact of application layer FEC on mobile multicast transmissions. We examine whether it is beneficial or not, how the optimal code dimension varies based on network conditions, which parameters affect the optimal code selection, and how this can be done. Additionally, we focus on one of the most critical aspects in mobile multicast transmission, which is power control. The evaluation is performed with the aid of a novel scheme that incorporates the properties of an evolved mobile network, as they are specified by the 3GPP. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
100.
Bioinspired nanocomposites with high levels of reinforcement hold great promise for future, green lightweight, and functional engineering materials, but they suffer from slow, tedious, and nonscalable preparation routes, that typically only lead to very thin films. A rapid and facile dry powder processing technique is introduced to generate bioinspired nanocomposite materials at high fractions of reinforcements (50 wt%) and with millimeter scale thickness. The process uses powder drying of vitrimer-coated nanoplatelets (nanoclay and MXene) from aqueous solution and subsequent hot-pressing. As a method of choice in industrial lightweight composite materials engineering, hot-pressing underscores a high potential to translate this approach to actual products. The use of the vitrimer chemistry with temperature-activated bond shuffling is important to facilitate smooth integration into the nanocomposite design, leading to layered nacre-inspired nanocomposites with nanoscale hard/soft order traced by X-ray diffraction and excellent mechanical properties investigated using flexural tests. Recycling by grinding and hot-pressing is possible without property loss. The compatibility with existing composite processing techniques, scalable thickness and dimensions, and recyclability open considerable opportunities for translating bioinspired nanocomposites to real-life applications. 相似文献