首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6905篇
  免费   403篇
  国内免费   6篇
电工技术   98篇
综合类   28篇
化学工业   1948篇
金属工艺   183篇
机械仪表   152篇
建筑科学   416篇
矿业工程   39篇
能源动力   243篇
轻工业   464篇
水利工程   42篇
石油天然气   5篇
无线电   602篇
一般工业技术   1477篇
冶金工业   278篇
原子能技术   38篇
自动化技术   1301篇
  2024年   14篇
  2023年   101篇
  2022年   152篇
  2021年   268篇
  2020年   187篇
  2019年   191篇
  2018年   190篇
  2017年   186篇
  2016年   282篇
  2015年   299篇
  2014年   349篇
  2013年   505篇
  2012年   472篇
  2011年   626篇
  2010年   411篇
  2009年   417篇
  2008年   402篇
  2007年   354篇
  2006年   275篇
  2005年   246篇
  2004年   189篇
  2003年   149篇
  2002年   149篇
  2001年   75篇
  2000年   100篇
  1999年   93篇
  1998年   83篇
  1997年   81篇
  1996年   86篇
  1995年   55篇
  1994年   46篇
  1993年   48篇
  1992年   46篇
  1991年   33篇
  1990年   20篇
  1989年   12篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   9篇
  1976年   3篇
  1975年   4篇
  1972年   4篇
  1959年   2篇
  1954年   3篇
排序方式: 共有7314条查询结果,搜索用时 12 毫秒
91.
92.
Ultranarrowband organic photodiodes (OPDs) are demonstrated for thin film solid state materials composed of tightly packed dipolar merocyanine dyes. For these dyes the packing arrangement can be controlled by the bulkiness of the donor substituent, leading to either strong H‐ or strong J‐type exciton coupling in the interesting blue (H‐aggregate) and NIR (J‐aggregate) spectral ranges. Both bands are shown to arise from one single exciton band according to fluorescence measurements and are not just a mere consequence of different polymorphs within the same thin film. By fabrication of organic thin‐film transistors, these dyes are demonstrated to exhibit hole transport behavior in spin‐coated thin films. Moreover, when used as organic photodiodes in planar heterojunctions with C60 fullerene, they show wavelength‐selective photocurrents in the solid state with maximum external quantum efficiencies of up to 11% and ultranarrow bandwidths down to 30 nm. Thereby, narrowing the linewidths of optoelectronic functional materials by exciton coupling provides a powerful approach to produce ultranarrowband organic photodiodes.  相似文献   
93.
Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water.  相似文献   
94.
Buried‐channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 105 cm2 V?1 s?1) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top‐gate of a dopant‐less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 1011cm?2, light effective mass (0.09me), and high effective g‐factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low‐disorder material platform for hybrid quantum technologies.  相似文献   
95.
A low electrode-electrolyte impedance interface is critical in the design of electrodes for biomedical applications. To design low-impedance interfaces a complete understanding of the physical processes contributing to the impedance is required. In this work a model describing these physical processes is validated and extended to quantify the effect of organic coatings and incubation time. Electrochemical impedance spectroscopy has been used to electrically characterize the interface for various electrode materials: platinum, platinum black, and titanium nitride; and varying electrode sizes: 1 cm2, and 900 microm2. An equivalent circuit model comprising an interface capacitance, shunted by a charge transfer resistance, in series with the solution resistance has been fitted to the experimental results. Theoretical equations have been used to calculate the interface capacitance impedance and the solution resistance, yielding results that correspond well with the fitted parameter values, thereby confirming the validity of the equations. The effect of incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance has been quantified using the model. This demonstrates the benefits of using this model in developing better understanding of the physical processes occurring at the interface in more complex, biomedically relevant situations.  相似文献   
96.
Autonomic cardiovascular control involves complex interactions of heart rate and blood pressure. In patients with dilated cardiomyopathy (DCM), this control is impaired and parameters for its quantification might be of prognostic importance. In this paper, we introduce methods based on joint symbolic dynamics (JSD) for the enhanced analysis of heart rate and blood pressure interactions. To assess the coarse-grained dynamics beat-to-beat changes of heart rate and blood pressure are encoded in symbol strings. Subsequently, the distribution properties of short symbol sequences (words) as well as the scaling properties of the whole symbol string are assessed. The comparison of joint symbolic heart rate and blood pressure dynamics in DCM (n = 75) with those in healthy controls (n = 75) showed significant changes. Both, the distribution of words and the scaling properties indicate a loss in heart rate dynamics associated with blood pressure regulation in DCM. In conclusion, the analyses of short- and long-term JSDs provide insights into complex physiological heart rate and blood pressure interactions and furthermore reveal patho-physiological cardiovascular control in DCM.  相似文献   
97.
This paper presents a theoretical overview and analysis of clock jitter in a switched capacitor (SC) Sigma-Delta (ΣΔ) Analog-to-Digital Converter (ADC). We start by defining three different types of jitter effects and proceed to analyze their impact, both mathematically and by simulations. The main jitter assumption throughout this analysis is that it is stochastic white Gaussian noise. Using this assumption, the ΣΔ performance is characterized in terms of Signal-to-Jitter-Noise-Ratio (SJNR) for each jitter effect. Non-uniform sampling effects have, to some extent, been characterized in litterature (S.R. Norsworthy, R. Schreier and G.C. Temes, Delta-Sigma Data ConvertersTheory, Design and Simulation, IEEE Press, New Jersey, 1997). However, varying phase-length effects are also a main focus in this work since they can have a significant impact on the total ADC performance depending on settling accuracy and characteristic. Furthermore, because SC circuits usually operate on a two-phase clock, jitter may give rise to a secondary effect, phase overlap, which does not appear when dealing with a single-phase clock. This effect severely degrades the resolution of a ΣΔ and therefore a thorough understanding of the interaction of jitter on the two phases is necessary.  相似文献   
98.
A novel buffering method is presented to improve the stability of zinc oxide processed in aqueous solutions. By buffering the aqueous solution with a suitable quantity of sacrificial zinc species, the dissolution of functional zinc oxide structures and the formation of unwanted impurities can be prevented. The method is demonstrated for ZnO films and nanowires processed in aqueous solutions used for the selective etching of mesoporous anodic alumina templates and the electrochemical deposition of Cu2O. In both cases, improved ZnO stability is observed with the buffering method. ZnO‐Cu2O heterojunction solar cells (bilayer and nanowire cells) synthesized using both traditional and buffered deposition methods are characterized by impedance spectroscopy and solar simulation measurements. Buffering the Cu2O deposition solution is found to reduce unwanted recombination at the heterojunction and improve the photovoltaic performance.  相似文献   
99.
3rd Generation Partnership Project (3GPP) has standardized the use of forward error correction (FEC) for the provision of reliable data transmission in the mobile multicast framework. This error control method inevitably adds a constant overhead in the transmitted data. However, it is so simple as to meet a prime objective for mobile multicast services; that is scalability to applications with thousands of receivers. In this paper, we present a study on the impact of application layer FEC on mobile multicast transmissions. We examine whether it is beneficial or not, how the optimal code dimension varies based on network conditions, which parameters affect the optimal code selection, and how this can be done. Additionally, we focus on one of the most critical aspects in mobile multicast transmission, which is power control. The evaluation is performed with the aid of a novel scheme that incorporates the properties of an evolved mobile network, as they are specified by the 3GPP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
100.
Bioinspired nanocomposites with high levels of reinforcement hold great promise for future, green lightweight, and functional engineering materials, but they suffer from slow, tedious, and nonscalable preparation routes, that typically only lead to very thin films. A rapid and facile dry powder processing technique is introduced to generate bioinspired nanocomposite materials at high fractions of reinforcements (50 wt%) and with millimeter scale thickness. The process uses powder drying of vitrimer-coated nanoplatelets (nanoclay and MXene) from aqueous solution and subsequent hot-pressing. As a method of choice in industrial lightweight composite materials engineering, hot-pressing underscores a high potential to translate this approach to actual products. The use of the vitrimer chemistry with temperature-activated bond shuffling is important to facilitate smooth integration into the nanocomposite design, leading to layered nacre-inspired nanocomposites with nanoscale hard/soft order traced by X-ray diffraction and excellent mechanical properties investigated using flexural tests. Recycling by grinding and hot-pressing is possible without property loss. The compatibility with existing composite processing techniques, scalable thickness and dimensions, and recyclability open considerable opportunities for translating bioinspired nanocomposites to real-life applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号