首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   57篇
  国内免费   2篇
电工技术   14篇
综合类   1篇
化学工业   257篇
金属工艺   19篇
机械仪表   35篇
建筑科学   27篇
矿业工程   3篇
能源动力   31篇
轻工业   17篇
水利工程   5篇
石油天然气   3篇
无线电   75篇
一般工业技术   287篇
冶金工业   40篇
原子能技术   19篇
自动化技术   201篇
  2024年   1篇
  2023年   14篇
  2022年   46篇
  2021年   46篇
  2020年   29篇
  2019年   29篇
  2018年   25篇
  2017年   33篇
  2016年   37篇
  2015年   32篇
  2014年   42篇
  2013年   56篇
  2012年   63篇
  2011年   79篇
  2010年   39篇
  2009年   50篇
  2008年   59篇
  2007年   52篇
  2006年   47篇
  2005年   39篇
  2004年   41篇
  2003年   33篇
  2002年   24篇
  2001年   14篇
  2000年   10篇
  1999年   14篇
  1998年   19篇
  1997年   9篇
  1996年   10篇
  1995年   12篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有1034条查询结果,搜索用时 15 毫秒
61.
Zvyagin AV  Eix I  Sampson DD 《Applied optics》2002,41(11):2179-2184
We describe and experimentally demonstrate a novel (to our knowledge) surface profiling technique, for which we propose the term closed-loop optical coherence topography. This technique is a scanning beam, servo-locked variation of low-coherence interferometry. It allows for the sub-wavelength-resolution tracking of a weakly scattering macroscopic-scale surface, with the surface profile being directly output by the controlling electronics. The absence of significant real-time computational overhead makes the technique well suited to high-speed tracking. The use of a micrometer-scale coherence gate efficiently suppresses signals arising from structures not associated with the surface. These features make the technique particularly well suited to real-time surface profiling of in vivo, macroscopic biological surfaces.  相似文献   
62.
We present a fast incremental algorithm for constructing minimal Deterministic Finite Cover Automata (DFCA) for a given language. Since it was shown that the minimal DFCA for a language L has less states than the minimal Deterministic Finite Automata (DFA) for the same language L, this technique seems to be the best choice for incrementally building the automaton for a large language, especially when the number of states in the DFCA is significantly less than the number of states in the corresponding minimal DFA. We have implemented the proposed algorithm and have tested it against the best-known DFCA minimization technique.  相似文献   
63.
A method for automatic identification of diatoms (single-celled algae with silica shells) based on extraction of features on the contour of the cells by multi-scale mathematical morphology is presented. After extracting the contour of the cell, it is smoothed adaptively, encoded using Freeman chain code, and converted into a curvature representation which is invariant under translation and scale change. A curvature scale space is built from these data, and the most important features are extracted from it by unsupervised cluster analysis. The resulting pattern vectors, which are also rotation-invariant, provide the input for automatic identification of diatoms by decision trees and k-nearest neighbor classifiers. The method is tested on two large sets of diatom images. The techniques used are applicable to other shapes besides diatoms. Andrei C. Jalba received his B.Sc. (1998) and M.Sc. (1999) in Applied Electronics and Information Engineering from “Politehnica” University of Bucharest, Romania. He recently obtained a Ph.D. degree at the Institute for Mathematics and Computing Science of the University of Groningen, where he now is a postdoctoral researcher. His research interests include computer vision, pattern recognition, image processing, and parallel computing. Michael Wilkinson obtained an M.Sc. in astronomy from the Kapteyn Laboratory, University of Groningen (RuG) in 1993, after which he worked on image analysis of intestinal bacteria at the Department of Medical Microbiology, RuG. This work formed the basis of his Ph.D. at the Institute of Mathematics and Computing Science (IWI), RuG, in 1995. He was appointed as researcher at the Centre for High Performance Computing (also RuG) working on simulating the intestinal microbial ecosystem on parallel computers. During that time he edited the book “Digital Image Analysis of Microbes” (John Wiley, UK, 1998) together with Frits Schut. After this he worked as a researcher at the IWI on image analysis of diatoms. He is currently assistant professor at the IWI. Jos B.T.M. Roerdink received his M.Sc. (1979) in theoretical physics from the University of Nijmegen, the Netherlands. Following his Ph.D. (1983) from the University of Utrecht and a 2-year position (1983--1985) as a Postdoctoral Fellow at the University of California, San Diego, both in the area of stochastic processes, he joined the Centre for Mathematics and Computer Science in Amsterdam. There he worked from 1986-1992 on image processing and tomographic reconstruction. He was appointed associate professor (1992) and full professor (2003), respectively, at the Institute for Mathematics and Computing Science of the University of Groningen, where he currently holds a chair in Scientific Visualization and Computer Graphics. His current research interests include biomedical visualization, neuroimaging and bioinformatics. Micha Bayer graduated from St. Andrews University, Scotland, with an M.Sc. in Marine Biology in 1994. He obtained his Ph.D. in Marine Biology from there in 1998, and then followed this up with two postdoctoral positions at the Royal Botanic Garden Edinburgh, Scotland, first on the ADIAC and then on the DIADIST project. In both of these projects he was responsible for establishing the collections of diatom training data to be used for the pattern recognition systems. From 2002–2003 he was enrolled for an M.Sc. in information technology at the University of Glasgow, Scotland, and is now working as a grid developer at the National e-Science Centre at Glasgow University. Stephen Juggins is a senior lecturer at the School of Geography, Politics and Sociology, University of Newcastle. His research focuses on the use of diatoms for monitoring environmental change and on the analysis of ecological and palaeoecological data. He has worked in Europe, North America and Central Asia on problems of river water quality, historical lake acidification, coastal eutrophication and Quaternary climate change.  相似文献   
64.
The power of communication: P systems with symport/antiport   总被引:4,自引:0,他引:4  
In the attempt to have a framework where the computation is done by communication only, we consider the biological phenomenon of trans-membrane transport of couples of chemicals (one say symport when two chemicals pass together through a membrane, in the same direction, and antiport when two chemicals pass simultaneously through a membrane, in opposite directions). Surprisingly enough, membrane systems without changing (evolving) the used objects and with the communication based on rules of this type are computationally complete, and this result is achieved even for pairs of communicated objects (as encountered in biology). Five membranes are used; the number of membranes is reduced to two if more than two chemicals may collaborate when passing through membranes. Andrei Paun: He graduated the Faculty of Mathematics of Bucharest University in 1998, received his M.Sc. degree from The University of Western Ontario in 1999, and since then he is a PhD student in the Computer Science Department of University of Western Ontario, London, Canada (under the guidance of prof. Sheng Yu). The topic of his thesis is Molecular Computing (especially, DNA and Membrane Computing), but his research interests also include neural networks, implementing automata, combinatorics on words. Gheorghe Paun: (the proud father of two sons, including the first author of this paper) He is a member of the Romanian Academy, working as a senior researcher in the Institute of Mathematics of the Romanian Academy, Bucharest, and as a Ramon y Cajal researcher in Rovira i Virgili University of Tarragona, Spain. He is one of the most active authors in (the theory of) DNA Computing, (co)author of many papers in this area, (co)author and (co)editor of several books. In 1998 he has initiated the area of Membrane Computing. Other research interests: regulated rewriting, grammar systems, contextual grammars, combinatorics on words, computational linguistics.  相似文献   
65.
In tissue the Young's modulus cannot be assumed constant over a wide deformation range. For example, direct mechanical measurements on human prostate show up to a threefold increase in Young's modulus over a 10% deformation. In conventional elasticity imaging, these effects produce strain-dependent elastic contrast. Ignoring these effects generally leads to suboptimal contrast (stiffer tissues at lower strain are contrasted against softer tissues at higher strain), but measuring the nonlinear behavior results in enhanced tissue differentiation. To demonstrate the methods extracting nonlinear elastic properties, both simulations and measurements were performed on an agar-gelatin phantom. Multiple frames of phase-sensitive ultrasound data are acquired as the phantom is deformed by 12%. All interframe displacement data are brought back to the geometry of the first frame to form a three-dimensional (3-D) data set (depth, lateral, and preload dimensions). Data are fit to a 3-D second order polynomial model for each pixel that adjusts for deformation irregularities. For the phantom geometry and elastic properties considered in this paper, reconstructed frame-to-frame strain images using this model result in improved contrast to noise ratios (CNR) at all preload levels, without any sacrifice in spatial resolution. From the same model, strain hardening at all preload levels can be extracted. This is an independent contrast mechanism. Its maximum CNR occurs at 5.13% preload, and it is a 54% improvement over the best case (preload 10.6%) CNR for frame-to-frame strain reconstruction. Actual phantom measurements confirm the essential features of the simulation. Results show that modeling of the nonlinear elastic behavior has the potential to both increase detectability in elasticity imaging and provide a new independent mechanism for tissue differentiation.  相似文献   
66.
A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are attracted towards the contours of the objects of interest by an electrostatic field, whose sources are computed based on the gradient-magnitude image. The electric field plays the same role as the potential forces in the snake model, while internal interactions are modeled by repulsive Coulomb forces. We demonstrate the flexibility and potential of the model in a wide variety of settings: shape recovery using manual initialization, automatic segmentation, and skeleton computation. We perform a comparative analysis of the proposed model with the active contour model and show that specific problems of the latter are surmounted by our model. The model is easily extendable to 3D and copes well with noisy images.  相似文献   
67.
We introduce two parameters, large-scale and small-scale rms roughness, to take into account the interface properties of thin films and multilayers in the calculation of their specular reflectance and transmittance. A theoretical motivation for the introduction of these two parameters instead of a standard single rms roughness is provided. Experimental power spectral density functions of several samples are used to illustrate ways in which the parameters introduced can be evaluated.  相似文献   
68.
BaTiO3 ferroelectric films were grown on Si/SiO2/Ti/Pt/Au/Pt templates at different temperatures in the range 560-680 °C by pulsed laser deposition. Cross section scanning electron microscopy images and atomic force microscopy surface morphology analysis reveal films with columnar structure and in-plane grain size distribution, in the range 10-60 nm, depending on growth temperature. Low-field dielectric measurements were performed as functions of temperature in the range 40-500 K and external dc field up to 400 kV/cm. The apparent permittivity of ferroelectric films grown at 680 °C shows Curie-Weiss behavior above 400 K with Curie temperature and Curie-Weiss constant 240 K and 1 · 105 K, respectively. The films grown at lower temperatures reveal a decrease of Curie temperature down to − 80 K, reduced values of apparent permittivity and loss tangent, and broadening of maximum of temperature dependence of apparent permittivity. The film grown at 590 °C demonstrates state of the art combination of temperature stability (temperature coefficient of apparent permittivity 300 ppm/K in the range 50-350 K), high tunability of apparent permittivity (up to 60% at room temperature), and relatively low loss tangent (less than 0.05 in the frequency range up to 10 GHz). The change in apparent permittivity and its temperature dependence, with variation of growth temperature are analyzed using two different composite models. The first model assumes the film to be a composite with vertical inclusions of low permittivity dielectric material associated with grain boundaries. This model may explain the observed decrease of permittivity with decreasing growth temperature, but not the shift of Curie temperature. The second model assumes a layered type of composite with low permittivity material associated with the film/electrode interfaces, and allows explanation of the Curie temperature shift.  相似文献   
69.
In this letter, a de-embedding procedure is proposed to accurately extract the small signal equivalent circuit of advanced MOSFETs up to 110GHz. This efficient procedure is easy to implement using only one "open" dummy structure to de-embed the external parasitics (probe pads, interconnecting transmission line, and top-down metallic interconnections and via holes) and is in particular suitable for industrial online automatic test. The method has been validated in the case of 65-nm n-MOSFETs and is proved to be efficient up to 110GHz  相似文献   
70.
An analytical method for calculating plasticity-induced fatigue crack closure in plates of finite thickness is presented. The developed method utilizes the distributed dislocation technique (DDT) and Gauss-Chebyshev quadrature. Crack tip plasticity is incorporated by adopting a Dugdale type strip yield model. The finite plate thickness effects are taken into account by using a recently obtained three-dimensional solution for an edge dislocation in an infinite plate. Numerical results for the ratio of the size of the crack tip plasticity zones are presented for the cases of uniform thickness wake and linearly increasing wake for a range of plate thickness to crack length ratios and applied load ratios. The results show a very good agreement with previous analytical solutions in the limiting cases of very thick and very thin plates. Further results for the opening stress to maximum stress ratio are also provided and are compared with known three-dimensional finite element (FE) solutions. A good agreement is observed. The developed method is shown to be an effective and very powerful tool in modeling the crack closure phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号