首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97956篇
  免费   1602篇
  国内免费   428篇
电工技术   923篇
综合类   2323篇
化学工业   13947篇
金属工艺   4999篇
机械仪表   3312篇
建筑科学   2925篇
矿业工程   591篇
能源动力   1512篇
轻工业   4889篇
水利工程   1406篇
石油天然气   388篇
无线电   10520篇
一般工业技术   18879篇
冶金工业   5640篇
原子能技术   352篇
自动化技术   27380篇
  2023年   74篇
  2022年   123篇
  2021年   251篇
  2020年   219篇
  2019年   259篇
  2018年   14672篇
  2017年   13611篇
  2016年   10234篇
  2015年   869篇
  2014年   612篇
  2013年   1073篇
  2012年   3754篇
  2011年   10267篇
  2010年   8823篇
  2009年   6080篇
  2008年   7450篇
  2007年   8367篇
  2006年   670篇
  2005年   1695篇
  2004年   1594篇
  2003年   1609篇
  2002年   929篇
  2001年   364篇
  2000年   438篇
  1999年   337篇
  1998年   697篇
  1997年   479篇
  1996年   384篇
  1995年   273篇
  1994年   259篇
  1993年   257篇
  1992年   183篇
  1991年   172篇
  1990年   169篇
  1989年   138篇
  1988年   122篇
  1987年   138篇
  1986年   129篇
  1985年   138篇
  1984年   116篇
  1983年   138篇
  1982年   121篇
  1981年   105篇
  1980年   89篇
  1979年   93篇
  1978年   83篇
  1977年   99篇
  1976年   163篇
  1955年   71篇
  1954年   77篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
A density functional plane-wave pseudopotential method is used to study the doping mechanisms of impurity defects(BiBa, YTi) in BaTiO3-BiYO3. Single BiBa and YTi impurities have little structure distortion. Bi forms ionic bond with nearby O atom in single Bi impurity, Y formed [YO6] octahedral in single Y impurity. However, in the co-doped BiBa and YTi structure, Bi formed three valence bonds with nearby O atom, which causes the large structure distortion. The doped ion makes the mobile of Ti4+ difficult and loss local ferroelectricity, which will broaden the dielectric constant temperature curve and increase the temperature stability of BaTiO3 ceramic matrix.  相似文献   
992.
Two kinds of porous silicon(PS) were synthesized by magnesiothermic reduction of rice husk silica(RHS) derived from the oxidization of rice husks(RHs). One was obtained from oxidization/reduction at 500 ℃ of the unleached RHs, the other was synthesized from oxidization/reduction at 650 ℃ of the acidleached RHs. The structural difference of the above PS was compared: the former had a high pore volume(PV, 0.31 cm3/g) and a large specific surface area(SSA, 45.2 m~2/g), 138 % and 17 % higher than the latter, respectively. As anode materials for lithium ion batteries, the former had reversible capacity of 1 400.7 m Ah/g, 987 m Ah/g lower than the latter; however, after 50 cycles, the former had 64.5 % capacity retention(907 m Ah/g), which was 41.2 % higher than the latter(555.7 m Ah/g). These results showed that the electrochemical performance of PS was significantly affected by its pore structures, and low reduction temperature played the key role in increasing its porosity, and therefore improving its cycling performance.  相似文献   
993.
Transparent conductive aluminum doped zinc oxide(ZnO:Al,AZO) films were prepared on glass substrates by rf(radio frequency) magnetron sputtering from ZnO: 3wt% Al_2O_3 ceramic target. The effect of argon gas pressure(PAr) was investigated with small variations to understand the influence on the electrical, optical and structural properties of the films. Structural examinations using X-ray diffraction(XRD) and scanning electron microscopy(SEM) showed that the ZnO:Al thin films were(002) oriented. The resistivity values were measured by four-point probe with the lowest resistivity of 5.76×10~(-4) Ω?cm(sheet resistance=9.6 Ω/sq. for a thickness=600 nm) obtained at the PAr of 0.3 Pa. The transmittance was achieved from ultravioletvisible(UV-VIS) spectrophotometer, 84% higher than that in the visible region for all AZO thin films. The properties of deposited thin films showed a significant dependence on the PAr.  相似文献   
994.
CeO2 stabilized ZrO2 ultra fine nanoparticles were successfully synthesized via a simple and effective sol-gel synthetic approach by using zirconylchloride octahydrate, cerium nitrate hexahydrate, and citric acid as starting materials. A series of techniques, including X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and N2-sorption analysis, were used to characterize the structure and morphology of the as-prepared samples. XRD studies indicate that the as-synthesized sample is of well crystallized tetragonal phase of CeO2 stabilized ZrO2 with high purity. TEM images show that the as-synthesized sample is composed of a large number of fine dispersive nanoparticles with an average size about 10 nm. The as-synthesized tetragonal CeO2 stabilized ZrO2 sample was heated at different temperatures in order to evaluate its thermal stability. The exprimental results reveal that the as-synthesized tetragonal CeO2 stabilized ZrO2 sample exhibits excellent stability without the occurrence of phase transformation.  相似文献   
995.
We investigated the aging effect on the chemical structure of silicone rubber composite materials under outdoor environment. The variations of low molecular weight siloxanes in silicone rubber were probed by gas chromatography-mass spectrometry during the degradation process. The experimental results indicate that a series of cyclic siloxanes exist in both the virgin and aged silicone rubber samples, while the additional low molecular weight siloxanes (hexamethyl cyclotrisiloxane) only appear in the aged samples. Meanwhile, the total amounts of low molecular weight siloxanes in the aged samples are much less than those in the virgin ones. The loss of low molecular weight siloxanes is induced by the chain scission and depolymerization.  相似文献   
996.
The feasibility of using coral reef sand (CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.  相似文献   
997.
By means of 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) combined with deconvolution technique, X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions (viz. 5 wt% Na2SO4, MgSO4, Na2SO4+NaCl and Na2SO4+NaCl+Na2CO3) on C-S-H microstructure in Portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO4 solution, Mg2+ promotes the decalcification of C-S-H by SO 4 2- ,increasing silicate tetrahedra polymerization and mean chain length (MCL) of C-S-H. However, the substituting degree of Al3+ for Si4+ (Al[4]/Si) in the paste does not change evidently. Effect of Na2SO4 solution on C-S-H is not significantly influenced by NaCl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO 4 2- and CO 3 2- attack, as well as the activation of fly ash by SO 4 2- attack will increase the MCL and Al[4]/Si, which are both higher than that under Na2SO4 corrosion, MgSO4 or Na2SO4 +NaCl coordination corrosion.  相似文献   
998.
Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg_(24)Y_5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) Rt(Mg-8Y) Rt(Mg-15Y) Rt(Mg-5Y) Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.  相似文献   
999.
The effects of ultrasonic vibration temperature on the microstructure of semisolid Sn-52 Bi alloy and mechanical properties were investigated. The results show that the microstructure and mechanical properties are improved obviously after the ultrasonic treatment. Nearly round and uniformly distributed primary Sn phase particles were obtained under the cavitation and acoustic streaming caused by ultrasonic treatment. The best effects of ultrasonic treatment on microstructure and mechanical properties were obtained with the ultrasonic vibration for 120 s at 140 ℃. The elongation of semisolid Sn-52 Bi alloy treated by ultrasonic vibration for 120 s at 140 ℃ was 42% and increased by 156.09% compared to conventional liquid casting Sn-52 Bi alloy without ultrasonic vibration. It is a feasible and effective method to adopt the semisolid metal forming technology assisted with ultrasonic vibration to improve the ductility of Sn-Bi alloys.  相似文献   
1000.
The effects of winglet offset distance, winglet coverage, and winglet cross section on the over-tip leakage loss for the plane tip have been investigated experimentally in a turbine blade cascade for a tip gap height-to-span ratio of h/s = 1.36 %. The results show that the over-tip leakage loss for the full coverage winglet increases steeply with increasing the winglet offset distance. This loss generation is attributed to flow disturbances over the forward-facing and backward-facing steps within the tip gap. The winglet flush mounted to the tip surface provides the best result. With the leading edge winglet portion or without it, the both-side winglet always provides better aerodynamic performance than the corresponding pressure-side winglet or suction-side winglet. Longer coverage of the both-side winglet leads to lower loss. Therefore, the full coverage winglet performs best in the loss reduction for the plane tip. In general, thinner winglet leads to better aerodynamic result, and the winglet cross section having a slant bottom surface with the smallest thickness at its outer end is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号