Bulletin of Engineering Geology and the Environment - Peat is an exceptionally problematic soil for construction purposes and is often stabilized by traditional stabilizers (like cement), which... 相似文献
To better understand the magnitude of arsenic contamination in groundwater and its effects on human beings, a detailed study was carried out in Jalangi, one of the 85 arsenic affected blocks in West Bengal, India. Jalangi block is approximately 122 km2 in size and has a population of 215538. Of the 1916 water samples analyzed (about 31% of the total hand tubewells) from the Jalangi block, 77.8% were found to have arsenic above 10 microg l(-1) [the World Health Organization (WHO)-recommended level of arsenic in drinking water], 51% had arsenic above 50 microg l(-1) (the Indian standard of permissible limit of arsenic in drinking water) and 17% had arsenic at above 300 microg l(-1) (the concentration predicting overt arsenical skin lesions). From our preliminary medical screening, 1488 of the 7221 people examined in the 44 villages of Jalangi block exhibit definite arsenical skin lesions. An estimation of probable population that may suffer from arsenical skin lesions and cancer in the Jalangi block has been evaluated comparing along with international data. A total of 1600 biologic samples including hair, nail and urine have been analyzed from the affected villages of Jalangi block and on an average 88% of the biologic samples contain arsenic above the normal level. Thus, a vast population of the block may have arsenic body burden. Cases of Bowen's disease and cancer have been identified among adults who also show arsenical skin lesions and children in this block are also seriously affected. Obstetric examinations were also carried out in this block. 相似文献
Jatropha curcas is an important non feed crop, increasingly important as a biofuel crop. It is hardy and resistant to different stress conditions in the field. In the wastelands of Gujarat (India), it is being grown for land reclamation and for socio-economic benefits. The long coastline in this state also promotes the growth of a large number of halophytes. Exploiting the genetic resource of Jatropha and halophytes for drought and salt-induced gene is an important area of research. For the isolation of genes and to study the molecular mechanism a good qualitative and quantitative RNA is a prerequisite. Jatropha leaves have latex, and therefore isolating RNA using guanidine thiocyanate or cetyltrimethylammonium bromide did not yield desirable quality of RNA. This paper reports a very simple and economical protocol for the isolation of good quality RNA from Jatropha and a few halophytes. The sodium dodecyl sulphate was used as a detergent for lysis of plant cells in the extraction buffer along with bentonite, which inhibits the ribonuclease’s activity. The addition of water saturated phenol in mortar-pestle, during grinding, facilitated better homogenisation of the tissues. Absolute RNA precipitation was obtained with the help of 2-butoxyethanol. Further this RNA was used successfully in preparation of complementary DNA and subsequently used for gene isolation. 相似文献
Earth-pipe-air heat exchanger (EPAHE) systems can be used to reduce the heating load of buildings in winter. A transient and implicit model based on computational fluid dynamics is developed to predict the thermal performance and heating capacity of earth-air-pipe heat exchanger systems. The model is developed inside the FLUENT simulation program. The model developed is validated against experimental investigations on an experimental set-up in Ajmer (Western India). Good agreement between simulated results and experimental data is obtained. Effects of the operating parameters (i.e. the pipe material, air velocity) on the thermal performance of earth-air-pipe heat exchanger systems are studied. The 23.42 m long EPAHE system discussed in this paper gives heating in the range of 4.1-4.8 °C for the flow velocities 2-5 m/s. Investigations on steel and PVC pipes have shown that performance of the EPAHE system is not significantly affected by the material of the buried pipe. Velocity of air through the pipe is found to greatly affect the performance of EPAHE system. 相似文献
This communication presents results of our 2-year survey on groundwater arsenic contamination in three districts Ballia, Varanasi and Gazipur of Uttar Pradesh (UP) in the upper and middle Ganga plain, India. Analyses of 4,780 tubewell water samples revealed that arsenic concentrations in 46.5% exceeded 10 microg/L, in 26.7%, 50 microg/L and in 10% 300 microg/L limits. Arsenic concentrations up to 3,192 microg//L were observed. The age of tubewells (n=1,881) ranged from less than a year to 32 years, with an average of 6.5 years. Our study shows that older tubewells had a greater chance of contamination. Depth of tubewells (n=3,810) varied from 6 to 60.5 m with a mean of 25.75 m. A detailed study in three administrative units within Ballia district, i.e. block, Gram Panchayet, and village was carried out to assess the magnitude of the contamination. Before our survey the affected villagers were not aware that they were suffering from arsenical toxicity through contaminated drinking water. A preliminary clinical examination in 11 affected villages (10 from Ballia and 1 from Gazipur district) revealed typical arsenical skin lesions ranging from melanosis, keratosis to Bowens (suspected). Out of 989 villagers (691 adults, and 298 children) screened, 137 (19.8%) of the adults and 17 (5.7%) of the children were diagnosed to have typical arsenical skin lesions. Arsenical neuropathy and adverse obstetric outcome were also observed, indicating severity of exposure. The range of arsenic concentrations in hair, nail and urine was 137-10,900, 764-19,700 microg/kg, and 23-4,030 microg/L, respectively. The urine, hair and nail concentrations of arsenic correlated significantly (r=0.76, 0.61, and 0.55, respectively) with drinking water arsenic concentrations. The similarity to previous studies on arsenic contamination in West Bengal, Bihar and Bangladesh indicates that people from a significant part of the surveyed areas in UP are suffering and this will spread unless drives to raise awareness of arsenic toxicity are undertaken and an arsenic safe water supply is immediately introduced. 相似文献
This article deals with needle-punched nonwoven geotextiles prepared from nettle and poly(lactic acid) fibers in different weight proportions for potential slope stabilization application using bioengineering approach. The geotextiles were tested for tensile strength, biodegradability, and enhancement of soil fertility. The tensile strength of the geotextiles was found to decrease with addition of stronger nettle fibers. This apparently surprising behavior was explained in the light of theoretical tensile mechanics of nonwovens. Further, the nettle fibers displayed higher biodegradability than the poly(lactic acid) fibers, and when buried under soil, all the geotextiles exhibited a loss in tensile strength. Interestingly, the fertility of the soil was remarkably improved after biodegradation of poly(lactic acid) fibers. Overall, the nonwoven geotextiles prepared in this work were found to be promising for slope stabilization application. 相似文献
A computer simulation model was used to evaluate a bowl versus inverted bowl assembly line arrangement for normal and exponential distributions and variances equal to 1 and 16. The model was developed on the basis of a realistic case problem and applied to a six-station assembly line. The results show that the inverted bowl is superior to the bowl arrangement for a normal distribution in terms of the total elapsed time evaluation criterion; however, with an exponential distribution, the bowl was found better than the inverted bowl for the same criterion. On the basis of the average percentage of working time and the average time in the system evaluation criteria, the bowl was found superior to the inverted bowl for a normal distribution. Similar results were obtained for an exponential distribution with a variance equal to 1, but no definitive inference could be made with a variance equal to 16. 相似文献
The thermal performance of a solar air collector (SAC) is investigated experimentally under the different climatic conditions of north eastern India using fuzzy logic based expert system (FLES). The FLES based on subtractive clustering (SC) with the fuzzy logic method where here, SC is used for extraction of optimal fuzzy IF-THEN rules while a fuzzy logic is used for modeling of SAC variables. This work considered four input variables [like mass flow rate (m), collector tilt angles (θ), solar radiation (Q), temperature (T)] and the four output variables [i.e. efficiency (η), exergetic efficiency (ηII), temperature rise (∆T), and pressure drop (∆P)]. First, 272 trials of experimentation on SAC are performed by varying m from 0.0078 to 0.0118 kg/s and θ from 30 to 60°, whereas the variation of metrological data is obtained in different working days. Then modeling and parametric analysis is carried out for SAC. Experimental results reveal that the value of η increases with the increase in m, Q, T and θ up to 45°. The higher value of m results in a higher value of ∆P and that reduces the value of ηII. Also, FLES model provides comparable and acceptable values for SAC. At last, validation of the FLES model is done via published data to confirm the results.
In the present study, the dry sliding wear behavior of rheocast A356 Al alloys, cast using a cooling slope, as well as gravity cast A356 Al alloy have been investigated at a low sliding speed of 1 ms?1, against a hardened EN 31 disk at different loads. The wear mechanism involves microcutting–abrasion and adhesion at lower load for all of the alloys studied in the present work. On the other hand, at higher load, mainly adhesive wear along with oxide formation is observed for gravity cast A356 Al alloy and rheocast A356 Al alloy, cast using a 45° slope angle. Unlike other alloys, 60° slope rheocast A356 Al alloy is found to undergo mainly abrasive wear at higher load. Accordingly, the rheocast sample, cast using a 60° cooling slope, exhibits a remarkably lower wear rate at higher load compared to gravity cast and 45° slope rheocast samples. This is attributed to the dominance of abrasive wear at higher load in the case of rheocast A356 Al alloy cast using a 60° slope. The presence of finer and more spherical primary Al grain morphology is found to resist adhesive wear in case of 60° cooling slope processed rheocast alloy and thereby delay the transition of the wear regime from normal wear to severe wear. 相似文献
7075 aluminum (Al) alloy as matrix and silicon carbide (SiC) as reinforcement has been identified since it has potential applications in aircraft and space industries because of lower weight to strength ratio, high wear resistance and creep resistance. Thorough investigations about the microstructure and characterization of Al alloy/SiC composite are needed so that metal matrix composites (MMCs) fabricated for aircraft and space industries are defect free and have sound microstructure. Objective of this research work are the fabrication and microstructural investigations of AA7075–SiCp MMCs. 7075 Al alloy is reinforced with 10 and 15 wt.% SiCp of size 20–40 μm by stir casting process. The resulting as-cast composite structures are analyzed using scanning electron microscopy, X-ray diffraction (XRD), differential thermal analysis, and electron probe microscopic analysis (EPMA). SiCp distribution and interaction with 7075 Al alloy matrix is studied. The 7075 Al alloy–SiCp composite microstructure showed excellent SiCp distribution into 7075 Al alloy matrix. In addition to this, no evidence of secondary chemical reactions is observed in XRD and EPMA analysis. Decomposition step in derivative thermogravimetric curve is seen at temperature of 1,257, 1,210, and 1,256 °C for 7075 Al alloy, AA7075/10 wt.%/SiCp (20–40 μm) and AA7075/15 wt.%/SiCp (20–40 μm) composites, respectively. So, these composites can be successfully used for applications where temperature does not exceed beyond 1,250 °C. 相似文献