首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
电工技术   1篇
化学工业   6篇
金属工艺   4篇
建筑科学   1篇
能源动力   52篇
轻工业   2篇
无线电   21篇
一般工业技术   29篇
冶金工业   3篇
自动化技术   5篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   10篇
  2011年   20篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1995年   2篇
  1990年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
31.
A hybrid heat sink concept which combines passive and active cooling approaches is proposed. The hybrid heat sink is essentially a plate fin heat sink with the tip immersed in a phase change material (PCM). The exposed area of the fins dissipates heat during periods when high convective cooling is available. When the air cooling is reduced, the heat is absorbed by the PCM. The governing conservation equations are solved using a finite-volume method on orthogonal, rectangular grids. An enthalpy method is used for modeling the melting/re-solidification phenomena. Results from the analysis elucidate the thermal performance of these hybrid heat sinks. The improved performance of the hybrid heat sink compared to a finned heat sink (without a PCM) under identical conditions, is quantified. In order to reduce the computational time and aid in preliminary design, a one-dimensional fin equation is formulated which accounts for the simultaneous convective heat transfer from the finned surface and melting of the PCM at the tip. The influence of the location, amount, and type of PCM, as well as the fin thickness on the thermal performance of the hybrid heat sink is investigated. Simple guidelines are developed for preliminary design of these heat sinks.  相似文献   
32.
This paper presents the results of an experimentally validated model for the prediction of local heat and mass transfer rates in a microchannel ammonia-water desorber. The desorber is an extremely compact 178 mm × 178 mm × 0.508 m tall component capable of transferring the required heat load (∼17.5 kW) for a residential heat pump system. The model predicts temperature, concentration and mass flow rate profiles through the desorber, as well as the effective wetted area of the heat transfer surface. Previous experimental and analytical research by the authors demonstrated the performance of this same microchannel geometry as an absorber. Together, these studies show that this compact geometry is suitable for all components in an absorption heat pump, which would enable the increased use of absorption technology in the small-capacity heat pump market.  相似文献   
33.
A simple input offset compensation scheme, with reduced sensitivity to charge injection and leakage, is introduced. It stores an amplified version of the offset that is applied during normal operation on the input side through a capacitive divider. Offset compensation takes place in a voltage additive manner in a separate path from the input signal. Experimental results of a test chip are shown that validate the proposed scheme.  相似文献   
34.
Piezoelectric fans are very low power, small, very low noise, solid-state devices that have recently emerged as viable thermal management solutions for a variety of portable electronics applications including laptop computers, cellular phones and wearable computers. Piezoelectric fans utilize piezoceramic patches bonded onto thin, low frequency flexible blades to drive the fan at its resonance frequency. The resonating, low frequency blade creates a streaming airflow directed at key electronics components. The optimization of a piezoelectric fan with two symmetrically placed piezoelectric patches is investigated through an analytical Bernoulli-Euler model as well as a finite element (FE) model of the composite piezo-beam. The closed form analytical solution is used to demonstrate that different optimal piezoceramic-to-blade length ratios and piezoceramic-to-blade thickness ratios exist for maximizing the electromechanical coupling factor (EMCF), tip deflection and rotation. Such optimization procedures provide simple design guidelines for the development of very-low power, high flow rate piezoelectric fans.  相似文献   
35.
Interdiffusion in nickel (Ni)-chromium (Cr) (face-centered cubic γ phase) alloys with small additions of aluminum (Al), silicon (Si), germanium (Ge), or palladium (Pd) was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni-22at.% Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge, and Ni-22at.%Cr-1.6at.%Pd were manufactured by arc casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 °C in a three-zone tube furnace for 168 h. Experimental concentration profiles were determined from polished cross sections of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine the average ternary interdiffusion coefficients. The effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale. This article was presented at the Multicomponent-Multiphase Diffusion Symposium in Honor of Mysore A. Dayananda, which was held during TMS 2006, the 135th Annual Meeting and Exhibition, March 12–16, 2006, in San Antonio, TX. The symposium was organized by Yongho Sohn of University of Central Florida, Carelyn E. Campbell of National Institute of Standards and Technology, Richard D. Sisson, Jr., of Worcester Polytechnic Institute, and John E. Morral of Ohio State University.  相似文献   
36.
37.
A numerical model is developed for the evaporating liquid meniscus in wick microstructures under saturated vapor conditions. Four different wick geometries representing common wicks used in heat pipes, viz., wire mesh, rectangular grooves, sintered wicks and vertical microwires, are modeled and compared for evaporative performance. The solid–liquid combination considered is copper–water. Steady evaporation is modeled and the liquid–vapor interface shape is assumed to be static during evaporation. Liquid–vapor interface shapes in different geometries are obtained by solving the Young–Laplace equation using Surface Evolver. Mass, momentum and energy equations are solved numerically in the liquid domain, with the vapor assumed to be saturated. Evaporation at the interface is modeled by using heat and mass transfer rates obtained from kinetic theory. Thermocapillary convection due to non-isothermal conditions at the interface is modeled for all geometries and its role in heat transfer enhancement from the interface is quantified for both low and high superheats. More than 80% of the evaporation heat transfer is noted to occur from the thin-film region of the liquid meniscus. The very small Capillary and Weber numbers resulting from the small fluid velocities near the interface for low superheats validate the assumption of a static liquid meniscus shape during evaporation. Solid–liquid contact angle, wick porosity, solid–vapor superheat and liquid level in the wick pore are varied to study their effects on evaporation from the liquid meniscus.  相似文献   
38.
Thermally activated systems based on sorption cycles, as well as mechanical systems based on vapor compression/expansion are assessed in this study for waste heat recovery applications. In particular, ammonia-water sorption cycles for cooling and mechanical work recovery, a heat transformer using lithium bromide-water as the working fluid pair to yield high temperature heat, and organic Rankine cycles using refrigerant R245fa for work recovery as well as versions directly coupled to a vapor compression cycle to yield cooling are analyzed with overall heat transfer conductances for heat exchangers that use similar approach temperature differences for each cycle. Two representative cases are considered, one for smaller-scale and lower temperature applications using waste heat at 60 °C, and the other for larger-scale and higher temperature waste heat at 120 °C. Comparative assessments of these cycles on the basis of efficiencies and system footprints guide the selection of waste heat recovery and upgrade systems for different applications and waste heat availabilities. Furthermore, these considerations are used to investigate four case studies for waste heat recovery for data centers, vehicles, and process plants, illustrating the utility and limitations of such solutions. The increased implementation of such waste heat recovery systems in a variety of applications will lead to decreased primary source inputs and sustainable energy utilization.  相似文献   
39.
The thermal resistance to heat transfer into the evaporator section of heat pipes and vapor chambers plays a dominant role in governing their overall performance. It is therefore critical to quantify this resistance for commonly used sintered copper powder wick surfaces, both under evaporation and boiling conditions. The objective of the current study is to measure the dependence of thermal resistance on the thickness and particle size of such surfaces. A novel test facility is developed which feeds the test fluid, water, to the wick by capillary action. This simulates the feeding mechanism within an actual heat pipe, referred to as wicked evaporation or boiling. Experiments with multiple samples, with thicknesses ranging from 600 to 1200 μm and particle sizes from 45 to 355 μm, demonstrate that for a given wick thickness, an optimum particle size exists which maximizes the boiling heat transfer coefficient. The tests also show that monoporous sintered wicks are able to support local heat fluxes of greater than 500 W cm?2 without the occurrence of dryout. Additionally, in situ visualization of the wick surfaces during evaporation and boiling allows the thermal performance to be correlated with the observed regimes. It is seen that nucleate boiling from the wick substrate leads to substantially increased performance as compared to evaporation from the liquid free surface at the top of the wick layer. The sharp reduction in overall thermal resistance upon transition to a boiling regime is primarily attributable to the conductive resistance through the saturated wick material being bypassed.  相似文献   
40.
This paper presents a comprehensive numerical investigation of the influence of cooling conditions on base separation, void formation, and thermally induced stresses during the solidification of a high Prandtl number energetic melt in a cylindrical enclosure. Numerical models have been developed to simulate the heat and mass transfer processes in melt casting as well as analyze the base separation and thermal stresses induced during solidification. Two models are dynamically coupled, and the numerical predictions are validated against experiments. Based on the numerical analysis, modified cooling conditions are suggested that are shown to reduce base separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号