首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
电工技术   1篇
化学工业   6篇
金属工艺   4篇
建筑科学   1篇
能源动力   52篇
轻工业   2篇
无线电   21篇
一般工业技术   25篇
冶金工业   3篇
自动化技术   5篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   10篇
  2011年   20篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1995年   2篇
  1990年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
31.
Prediction of the onset of nucleate boiling in microchannel flow   总被引:1,自引:1,他引:1  
The onset of nucleate boiling in the flow of water through a microchannel heat sink was investigated. The microchannels considered were 275 μm wide by 636 μm deep. Onset of nucleate boiling was identified with a high-speed imaging system and the heat flux at incipience was measured under various flow conditions. An analytical model was developed to predict the incipient heat flux as well as the bubble size at the onset of boiling. The closed-form solution obtained sheds light on the impact of the important system parameters on the incipient heat flux. The model predictions yield good agreement with the experimental data.  相似文献   
32.
Thermal interface materials (TIMs) are used in electronics cooling applications to decrease the thermal contact resistance between surfaces in contact. A methodology to determine the optimal volume fraction of filler particles in TIMs for minimizing the thermal contact resistance is presented. The method uses finite element analysis to solve the coupled thermo-mechanical problem. It is shown that there exists an optimal filler volume fraction which depends not only on the distribution of the filler particles in a TIM but also on the thickness of the TIM layer, the contact pressure and the shape and the size of the filler particles. A contact resistance alleviation factor is defined to quantify the effect of these parameters on the contact conductance with the use of TIMs. For the filler and matrix materials considered-platelet-shaped boron nitride filler particles in a silicone matrix-the maximum observed enhancement in contact conductance with the use of TIMs was by a factor of as much as nine.  相似文献   
33.
Srinivas Garimella   《Energy》2003,28(15):1593-1614
This paper discusses several different approaches to increase the energy efficiency and decrease the environmental impact of space-conditioning systems. The use of microchannel components and hydronic coupling is presented as a method to drastically reduce the size and refrigerant inventories of the refrigerant-carrying components of vapor-compression heat pumps. Design aspects of heat pumps using carbon dioxide, a natural refrigerant with minimal environmental impact, are discussed, and novel component geometries that offer compactness are presented. The advantages of absorption heat pumps using waste heat and natural gas are discussed, and innovative component designs are presented. It is believed that these innovations will hasten the commercialization of these environmentally benign alternatives to CFC- and HCFC-based vapor-compression systems. The environmental benefits of waste heat-driven absorption chillers are quantified in terms of the energy savings, greenhouse gas emission reductions, and installed electric power reductions. Ground coupling of these heat pumps is also discussed, with specific examples of the performance improvement over similar air-coupled heat pumps.  相似文献   
34.
This paper presents a comprehensive numerical investigation of the influence of cooling conditions on base separation, void formation, and thermally induced stresses during the solidification of a high Prandtl number energetic melt in a cylindrical enclosure. Numerical models have been developed to simulate the heat and mass transfer processes in melt casting as well as analyze the base separation and thermal stresses induced during solidification. Two models are dynamically coupled, and the numerical predictions are validated against experiments. Based on the numerical analysis, modified cooling conditions are suggested that are shown to reduce base separation.  相似文献   
35.
A mathematical model is developed for predicting the thermal performance of a flat micro heat pipe with a rectangular grooved wick structure. The effects of the liquid–vapor interfacial shear stress, the contact angle, and the amount of liquid charge are accounted for in the present model. In particular, the axial variations of the wall temperature and the evaporation and condensation rates are considered by solving the one-dimensional conduction equation for the wall and the augmented Young–Laplace equation, respectively. The results obtained from the proposed model are in close agreement with several existing experimental data in terms of the wall temperatures and the maximum heat transport rate. From the validated model, it is found that the assumptions employed in previous studies may lead to significant errors for predicting the thermal performance of the heat pipe. Finally, the maximum heat transport rate of a micro heat pipe with a grooved wick structure is optimized with respect to the width and the height of the groove by using the proposed model. The maximum heat transport rate for the optimum conditions is enhanced by approximately 20% compared to existing experimental results.  相似文献   
36.
A hybrid heat sink concept which combines passive and active cooling approaches is proposed. The hybrid heat sink is essentially a plate fin heat sink with the tip immersed in a phase change material (PCM). The exposed area of the fins dissipates heat during periods when high convective cooling is available. When the air cooling is reduced, the heat is absorbed by the PCM. The governing conservation equations are solved using a finite-volume method on orthogonal, rectangular grids. An enthalpy method is used for modeling the melting/re-solidification phenomena. Results from the analysis elucidate the thermal performance of these hybrid heat sinks. The improved performance of the hybrid heat sink compared to a finned heat sink (without a PCM) under identical conditions, is quantified. In order to reduce the computational time and aid in preliminary design, a one-dimensional fin equation is formulated which accounts for the simultaneous convective heat transfer from the finned surface and melting of the PCM at the tip. The influence of the location, amount, and type of PCM, as well as the fin thickness on the thermal performance of the hybrid heat sink is investigated. Simple guidelines are developed for preliminary design of these heat sinks.  相似文献   
37.
38.
This paper presents the results of an experimentally validated model for the prediction of local heat and mass transfer rates in a microchannel ammonia-water desorber. The desorber is an extremely compact 178 mm × 178 mm × 0.508 m tall component capable of transferring the required heat load (∼17.5 kW) for a residential heat pump system. The model predicts temperature, concentration and mass flow rate profiles through the desorber, as well as the effective wetted area of the heat transfer surface. Previous experimental and analytical research by the authors demonstrated the performance of this same microchannel geometry as an absorber. Together, these studies show that this compact geometry is suitable for all components in an absorption heat pump, which would enable the increased use of absorption technology in the small-capacity heat pump market.  相似文献   
39.
A simple input offset compensation scheme, with reduced sensitivity to charge injection and leakage, is introduced. It stores an amplified version of the offset that is applied during normal operation on the input side through a capacitive divider. Offset compensation takes place in a voltage additive manner in a separate path from the input signal. Experimental results of a test chip are shown that validate the proposed scheme.  相似文献   
40.
Piezoelectric fans are very low power, small, very low noise, solid-state devices that have recently emerged as viable thermal management solutions for a variety of portable electronics applications including laptop computers, cellular phones and wearable computers. Piezoelectric fans utilize piezoceramic patches bonded onto thin, low frequency flexible blades to drive the fan at its resonance frequency. The resonating, low frequency blade creates a streaming airflow directed at key electronics components. The optimization of a piezoelectric fan with two symmetrically placed piezoelectric patches is investigated through an analytical Bernoulli-Euler model as well as a finite element (FE) model of the composite piezo-beam. The closed form analytical solution is used to demonstrate that different optimal piezoceramic-to-blade length ratios and piezoceramic-to-blade thickness ratios exist for maximizing the electromechanical coupling factor (EMCF), tip deflection and rotation. Such optimization procedures provide simple design guidelines for the development of very-low power, high flow rate piezoelectric fans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号