首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   13篇
电工技术   4篇
化学工业   113篇
金属工艺   15篇
机械仪表   11篇
建筑科学   6篇
能源动力   48篇
轻工业   33篇
石油天然气   1篇
无线电   106篇
一般工业技术   138篇
冶金工业   64篇
原子能技术   4篇
自动化技术   89篇
  2023年   3篇
  2022年   8篇
  2021年   18篇
  2020年   8篇
  2019年   12篇
  2018年   17篇
  2017年   11篇
  2016年   14篇
  2015年   8篇
  2014年   20篇
  2013年   43篇
  2012年   46篇
  2011年   36篇
  2010年   49篇
  2009年   27篇
  2008年   38篇
  2007年   32篇
  2006年   25篇
  2005年   20篇
  2004年   26篇
  2003年   6篇
  2002年   12篇
  2001年   10篇
  2000年   10篇
  1999年   14篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   11篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有632条查询结果,搜索用时 15 毫秒
111.
The microstructure and microhardness of copper subjected to large strains either using one or a combination of severe plastic deformation (SPD) processing techniques was evaluated. The individual SPD techniques used include equal-channel angular pressing (ECAP), high-pressure torsion (HPT), and chip formation during machining (M). Microstructural characterization using orientation imaging microscopy provided detailed information on the grain sizes and misorientation statistics after different processing routes. Vickers indentation analysis was used to evaluate the hardness of the deformed samples. The results show that excellent microstructures and properties are achieved when these three processes are used in combination, including grain sizes in the range of ~0.2–0.3 μm and hardness values up to >1,900 MPa.  相似文献   
112.
BS Gully  J Zou  G Cadby  DM Passon  KS Iyer  CS Bond 《Nanoscale》2012,4(17):5321-5324
In the structural analysis of proteins via X-ray diffraction, a rate-limiting step is in favourable nucleation, a problematic obstacle in successful generation of protein crystals. Here graphene and graphene oxide were applied to protein crystallisation trials, offering improvements in crystalline output and nucleation.  相似文献   
113.
This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to a thickness of 250 μm then ground and polished to a finished thickness of 100 μm and gamma sterilized. Native Ti–6Al–4V and Co–Cr–Mo alloys were used as controls. The corrosion behavior was evaluated using potentiodynamic polarization, mechanical abrasion and electrochemical impedance spectroscopy under physiologically representative test solution conditions (phosphate buffered saline, pH 7.4, 37 °C) as well as harsh corrosion environments (pH  2, 1 M H2O2, T = 65 °C). Severe environmental conditions were used to assess how susceptible coatings are to conditions that derive from possible crevice-like environments, and the presence of inflammatory species like H2O2. SEM analysis was performed on the coating surface and cross-section. The results show that the corrosion current values of the coatings (0.4–4 μA/cm2) were in a range similar to Co–Cr–Mo alloy. The heterogeneous microstructure of the coating influenced the corrosion performance. It was observed that the coating impedances for all groups decreased significantly in aggressive environments compared with neutral and also dropped over exposure time. The low frequency impedances of coatings were lower than controls. Among the coated samples, passivated nanocarbide coating on Co–Cr–Mo alloy displayed the least corrosion resistance. However, all the coated materials demonstrated higher corrosion resistance to mechanical abrasion compared to the native alloys.  相似文献   
114.
115.
In this paper we report the synthesis of methyltriethoxysilane (MTES) based aerogels by non-supercritical/ambient pressure drying. The alcogels have been aged in different concentrations of silane precursor solutions before drying and aerogels with low density and high porosity were obtained. The 60% vol silane aged aerogel shows a surface area of 416 m2/g with a pore volume of 0.99 cm3/g and a maximum surface area of 727 m2/g was obtained for 80% vol silane aged aerogel. The non-silane aged sample possess a surface area of 471 m2/g with a total pore volume of 0.83 cm3/g. The aerogels show broad pore-size distribution. The FT-IR studies reveal the retention of Si–C bond in the network and the formation of a hydrophobic gel. The 29Si magic angle spinning nuclear magnetic resonance (29Si MAS-NMR) studies were also employed to characterize the local environment around the silicon atoms and to obtain information on the condensation degree of the gel network. By varying the hydrolysis pH, highly flexible aerogels have also been successfully prepared. The porosity studies on the flexible aerogels are also presented here.  相似文献   
116.
RADA16 self-assembling peptide nanofiber scaffolds (SAPNSs) have been shown to have positive effects on neural regeneration following injury to the central nervous system in vivo, but mechanisms are unclear. Here we show that RADA16 SAPNSs form scaffolds of increasing fiber density with increasing peptide concentration which in turn has a concentration-dependent effect on neurons and astrocytes in mixed retinal cultures. Importantly, we report that the final nanoscale fiber architecture is an important factor to consider in designing scaffolds to promote regeneration in the central nervous system.  相似文献   
117.
The nickel‐based anodes of solid oxide fuel cells (SOFCs) can catalytically reform hydrocarbons, which make natural gas, gasification syngas, etc., become potential fuels in addition to hydrogen. SR and water–gas shift (WGS) often occur inside SOFCs when operated on these fuels. Their reaction rates affect the partial pressures of hydrogen and carbon monoxide, the local temperatures and the related Nernst voltages. Consequently, the reaction rates affect the electrochemical reactions in the fuel cell. Three different kinetic models were used to characterize methane SR in a tubular SOFC; the results of each model were evaluated and compared. The polarizations of the fuel cell results of these models were validated against experimental data. The performance of a fuel cell operated with different fuels and based on a selected kinetic model was further studied in terms of the anode oxygen partial pressure, the thermo‐electrochemical distribution, and the system level performance.  相似文献   
118.
Cyclic delay diversity employing multiple transmit antenna provides increased frequency selectivity and thereby improves the frequency diversity in coded orthogonal frequency division multiplexing (OFDM). However, spatial correlation due to insufficient spacing between transmit antennas degrades the diversity performance. In this paper, the correlation of effective channel frequency response (CFR) of CDD OFDM is analysed and then propose constellation rotation and adjacent interleaving (CRAI) scheme over spatially correlated channel. In the proposed scheme, the subcarrier constellation is rotated by a known angle and then imaginary parts of rotated adjacent subcarriers are interleaved. The squared Euclidean distance of the codewords is derived to show the effect of constellation rotation. Adjacent interleaving is shown to exploit the frequency diversity by reducing the variation in average channel power (ACP) due to spatial correlation. Simulation results reveal that the proposed scheme performs well in spatial correlated channel and thereby improves the bit error rate (BER) performance.  相似文献   
119.
Silicon oxycarbides with controlled porosity in the mesopore range have been obtained through high‐temperature pyrolysis of newly developed reactive siloxane formulations. The starting gels have been synthesized via Pt catalyzed hydrosilylation reaction between polyhydromethylsiloxane (PHMS) and vinyl‐terminated polydimethylsiloxane (PDMS) of different molecular weights in the presence of tetravinyltetramethylcyclotetrasiloxane as a crosslinking enhancer. In our approach, the PDMS serves the double purpose of size‐controlling templating agent as well as solvent at the early stages of the synthesis. During the curing step, the vinyl‐terminated PDMS is chemically bonded to the preceramic network through the extremely efficient hydrosilylation reaction and “solidify.” Accordingly, its removal during pyrolysis occurs through decomposition of a solid phase with retention of the formed porosity. The structural and morphological evolution of the preceramic gels containing the molecular spacers have been investigated as a function of the thermal treatment temperature by N2 physisorption measurements, thermogravimetry, and SEM analyses. The results show that the pore size distribution of the resulting SiOCs depends on the molecular weight of the PDMS and is directly related to the molecular volume assumimg that the PDMS chains are entangled into spheroidal shapes. The total pore volume is related to the initial amount of templating PDMS assuming its complete decomposition during pyrolysis.  相似文献   
120.
In this study, for the first time, we report the gas sensing behavior of aerogel‐derived silicon oxycarbide (SiOC) glasses. The SiOC glass pyrolyzed at 1400°C has specific surface area of 150 m2/g with pore size in the 2–20 nm range. SiOC sensor shows good response to 5 ppm NO2 at 300°C. NO2 response completely disappears at 400°C, and from this temperature SiOC sensor starts respond to H2. The optimum sensitivity for H2 is obtained at 500°C. SiOC sensor is very selective; it is not sensitive to other gases such as acetone vapor or CO, even at high concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号