首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   16篇
电工技术   1篇
化学工业   78篇
金属工艺   2篇
机械仪表   2篇
建筑科学   5篇
能源动力   5篇
轻工业   37篇
水利工程   3篇
无线电   17篇
一般工业技术   36篇
冶金工业   1篇
自动化技术   30篇
  2023年   5篇
  2022年   22篇
  2021年   28篇
  2020年   9篇
  2019年   5篇
  2018年   7篇
  2017年   10篇
  2016年   14篇
  2015年   6篇
  2014年   5篇
  2013年   16篇
  2012年   15篇
  2011年   15篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   4篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   1篇
  1997年   1篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
101.
102.
Necrotizing enterocolitis (NEC) is a gut inflammatory disorder which constitutes one of the leading causes of morbidity and mortality for preterm infants. The pathophysiology of NEC is yet to be fully understood; several observational studies have led to the identification of multiple factors involved in the pathophysiology of the disease, including gut immaturity and dysbiosis of the intestinal microbiome. Given the complex interactions between microbiota, enterocytes, and immune cells, and the limited access to fetal human tissues for experimental studies, animal models have long been essential to describe NEC mechanisms. However, at present there is no animal model perfectly mimicking human NEC; furthermore, the disease mechanisms appear too complex to be studied in single-cell cultures. Thus, researchers have developed new approaches in which intestinal epithelial cells are exposed to a combination of environmental and microbial factors which can potentially trigger NEC. In addition, organoids have gained increasing attention as promising models for studying NEC development. Currently, several in vitro models have been proposed and have contributed to describe the disease in deeper detail. In this paper, we will provide an updated review of available in vitro models of NEC and an overview of current knowledge regarding its molecular underpinnings.  相似文献   
103.
104.
Nanostructured liquid/solid and solid/solid bulk heterojunctions designed for the conversion of solar energy offer ideal models for the investigation of light-induced ET dynamics at surfaces. Despite significant study of processes leading to charge generation in third-generation solar cells, a conclusive picture of the photophysics of these photovoltaic converters is still missing. More specifically searched is the link between the molecular structure of the interface and the kinetics of surface photoredox reactions. Fundamental scientific issues in this field are addressed by the research project undertaken in the frame of the NCCR MUST endeavor, an outline of which is given here.  相似文献   
105.
Nano‐objects would be of great interest for the development of new types of electronic circuits if one could combine their nanometer scale with original functionalities beyond the conventional transistor action. However, the associated circuit architectures will have to handle the increasing variability and defect rate intrinsic to the nanoscale. In this context, there is a very fast growing interest for memory devices, and in particular resistive memory devices, used as building blocks in reconfigurable circuits tolerant to defects and variability. It was recently shown that optically gated carbon nanotube field effect transistors (OG‐CNTFETs) based on large assemblies of nanotubes covered by an organic photoconductive thin film can be operated as programmable resistors and thus used as artificial synapses in circuits with function‐learning capabilities. Here, the potential of such approach is evaluated in terms of scalability by integrating and addressing several individually programmable resistances on a single carbon nanotube. In addition, the charge storage mechanism can be controlled at a length scale smaller than the device length allowing to also program the direction in which the current flows. It thus demonstrates that a single nanotube section can combine all‐in‐one the properties of an analog resistive memory and of a rectifying diode with tunable polarity.  相似文献   
106.
107.
108.
The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.  相似文献   
109.
110.
Indocyanine green (ICG) is a near infrared fluorescent tracer used in image-guided surgery to assist surgeons during resection. Despite appearing as a very promising tool for surgical oncology, its employment in this area is limited to lymph node mapping or to laparoscopic surgery, as it lacks tumor targeting specificity. Recently, a nanoformulation of this dye has been proposed with the aim toward tumor targeting specificity in order to expand its employment in surgical oncology. This nanosystem is constituted by 24 monomers of H-Ferritin (HFn), which self-assemble into a spherical cage structure enclosing the indocyanine green fluorescent tracer. These HFn nanocages were demonstrated to display tumor homing due to the specific interaction between the HFn nanocage and transferrin receptor 1, which is overexpressed in most tumor tissues. Here, we provide an ex vivo detailed comparison between the biodistribution of this nanotracer and free ICG, combining the results obtained with the Karl Storz endoscope that is currently used in clinical practice and the quantification of the ICG signal derived from the fluorescence imaging system IVIS Lumina II. These insights demonstrate the suitability of this novel HFn-based nanosystem in fluorescence-guided oncological surgery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号