首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学工业   9篇
金属工艺   2篇
机械仪表   3篇
建筑科学   3篇
能源动力   2篇
轻工业   3篇
无线电   13篇
一般工业技术   12篇
冶金工业   24篇
原子能技术   1篇
自动化技术   10篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   13篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有82条查询结果,搜索用时 74 毫秒
81.
The malfunction and misregulation of voltage-gated sodium channels (NaVs) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaVs are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV1.1, 1.3, and 1.6–1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.  相似文献   
82.
Voltage-gated sodium ion channels (NaVs) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of NaVs hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) – a potent and reversible inhibitor of multiple NaV isoforms – and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or ‘click’ functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na+ conductance when applied to recombinant NaVs and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of NaVs expressed in the plasma membranes of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号