首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学工业   1篇
轻工业   1篇
无线电   14篇
一般工业技术   2篇
冶金工业   10篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1993年   3篇
  1992年   1篇
排序方式: 共有28条查询结果,搜索用时 0 毫秒
21.
This paper introduces a two-stage model for assessing crosstalk in balanced interconnections used for differential signal transmission, such as multipair cables. The first stage considers the interconnection as uniform and uses a change of variables based on the symmetries inherent to balancing, for the definition of a set of parameters to be measured. The second stage of the model takes into account the nonuniformity related to the fluctuations of the characteristics of the interconnection, using a first order perturbation expansion and a probabilistic approach. This model is compatible with published results on crosstalk in multipair cables.  相似文献   
22.
The Escherichia coli NarI restriction enzyme recognition site 5'G1G2C3G4C5C63' is a mutational hotspot for -2 deletions in E. coli plasmid pBR322, resulting in the sequence 5'GGCC3' when G4 is modified by the aromatic amine N-2-(acetyl)aminofluorene (AAF) [Burnouf, D., Koehl, P., and Fuchs, R. P. P. (1995) Proc. Natl. Acad. Sci. U.S.A. 86, 4147-4151] even though each G shows similar reactivity [Fuchs, R. P. P. (1984) J. Mol. Biol. 177, 173-180]. Modification at G4 by the related aromatic amine 2-aminofluorene (AF), which lacks the acetyl group of AAF, can also cause -2 deletions, but at a lower frequency [Bichara, M., and Fuchs, R. P. P. (1985) J. Mol. Biol. 183, 341-351]. A specific mechanism has been proposed to explain the double-base frameshifts in the NarI sequence in which the GC deletion results from a slipped mutagenic intermediate formed during replication [Schaaper, B. M., Koffel-Schwartz, N., and Fuchs, R. P. P. (1990) Carcinogenesis 11, 1087-1095]. We address the following key questions in this study. Why does AAF modification dramatically increase the mutagenicity at the NarI G4 position, and why does AAF enhance the mutagenicity more than AF? We studied two intermediates which model replication at one arm of a fork, using a fragment of DNA modified by AF or AAF at G4 in the NarI sequence: Intermediate I can be converted into intermediate II by misalignment. Elongation of intermediate I leads to error-free translesion synthesis, while elongation of intermediate II leads to a -2 frameshift mutation. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to investigate the conformations of the AF and AAF adducts at G4 in these two intermediates. We find that the slipped mutagenic intermediate is quite stable relative to its normally extended counterpart in the presence of AF and AAF in an abnormal syn orientation of the damaged base. An enhanced probability of elongation from a stable slipped structure rather than a properly aligned one would favor increased -2 frameshift mutations. Furthermore, AAF-modified DNA has a greater tendency to adopt the syn orientation than AF because of its greater bulk, which could explain its greater propensity to cause -2 deletions in the NarI sequence.  相似文献   
23.
The simulation of two electromagnetic compatibility (EMC) problems, namely crosstalk and field-to-wire coupling, using SPICE are described. These modeling techniques for simulation of EMC of multiconductor transmission lines allow calculation in the time domain, as well as the frequency domain. Nonlinearities, protective devices, and even complex circuitry can be included at both ends of the transmission line. Disturbing voltages can also be studied at any node in a susceptor network. The techniques also offer the possibility of including arbitrary sources of radiated disturbances, which could allow the simulation of aperture coupling in an enclosure  相似文献   
24.
A combined NMR-computational approach was employed to determine the solution structure of the (-)-trans-anti-[BP]dG adduct positioned opposite a -1 deletion site in the d(C1-C2-A3-T4-C5- [BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14-A15-G1 6-G17-A18-T19-G20-G21) sequence context. The (-)-trans-anti-[BP]dG moiety is derived from the binding of the (-)-anti-benzo[a]pyrene diol epoxide [(-)-anti-BPDE] to N2 of dG6 and has a 10R absolute configuration at the [BP]dG linkage site. The exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. The solution conformation has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space followed by restrained molecular dynamics calculations based on a NOE distance and intensity refinement protocol. Our structural studies establish that the aromatic BP ring system intercalates into the helix opposite the deletion site, while the modified deoxyguanosine residue is displaced into the minor groove with its face parallel to the helix axis. The intercalation site is wedge-shaped and the BP aromatic ring system stacks over intact flanking Watson-Crick dG.dC base pairs. The modified deoxyguanosine stacks over the minor groove face of the sugar ring of the 5'-flanking dC5 residue. The BP moiety is positioned with the benzylic ring oriented toward the minor groove and the distal pyrenyl aromatic ring directed toward the major groove. This conformation strikingly contrasts with the corresponding structure in the full duplex with the same 10R (-)-trans-anti-[BP]dG lesion positioned opposite a complementary dC residue [de los Santos et al. (1992) Biochemistry 31, 5245-5252); in this case the aromatic BP ring system is located in the minor groove, and there is no disruption of the [BP]dG.dC Watson-Crick base pairing alignment. The intercalation-base displacement features of the 10R (-)-trans-anti-[BP]dG adduct opposite a deletion site have features in common to those of the 10S (+)-trans-anti-[BP]dG adduct opposite a deletion site previously reported by Cosman et al. [(1994)(Biochemistry 33, 11507-11517], except that there is a nearly 180 degrees rotation of the BP residue about the axis of the helix at the base-displaced intercalation site and the modified deoxyguanosine is positioned in the opposite groove. In the 10S adduct, the benzylic ring is in the major groove and the aromatic ring systems point toward the minor groove. This work extends the theme of opposite orientations of adducts derived from chiral pairs of (+)- and (-)-anti-BPDE enantiomers; both 10S and 10R adducts can be positioned with opposite orientations either in the minor groove or at base displaced intercalation sites, depending on the presence or absence of the partner dC base in the complementary strand.  相似文献   
25.
Transfer admittance for electromagnetic compatibility (EMC) prediction is reviewed. A method for measuring the transfer admittance of cables is presented. Some experimental results are given for coaxial cables. Although the through elastance is not measurable, the authors show that it is at least one order of magnitude smaller than what current theory predicts  相似文献   
26.
Experimental studies involving the carcinogenic aromatic amine 2-(acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be important in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A.P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7).d(G8-C9-G10-C11-G12-C13-G14+ ++); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6-A7).d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson-Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.  相似文献   
27.
This paper is about the computation of the maximum electric and magnetic field strengths at a given distance of an antenna, close to the antenna, the maximum being taken over all orientations. We provide closed-form expressions for the maximum field strengths produced in free space by three important ideal antennas: the electric Hertzian dipole, the magnetic Hertzian dipole, and the half-wave dipole.  相似文献   
28.
Combined NMR-molecular mechanics computational studies were undertaken on the C8-deoxyguanosine adduct formed by the carcinogen 1-nitropyrene embedded in the d(C5-[AP]G6-C7).d(G16-C17-G18) sequence context in a 11-mer duplex, with dC opposite the modified deoxyguanosine. The exchangeable and nonexchangeable protons of the aminopyrene moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. There was a general broadening of several proton resonances for the three nucleotide d(G16-C17-G18) segment positioned opposite the [AP]dG6 lesion site resulting in weaker NOEs involving these protons in the adduct duplex. The solution conformation of the [AP]dG.dC 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by upper and lower bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs. The modified deoxyguanosine ring of [AP]dG6 is displaced into the major groove and stacks with the major groove edge of dC5 in the adduct duplex. Both carbon and proton chemical shift data for the sugar resonances of the modified deoxyguanosine residue are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue. The dC17 base on the partner strand is displaced from the center of the helix toward the major groove as a consequence of the aminopyrene ring intercalation into the helix. This base-displaced intercalative structure of the [AP]dG.dC 11-mer duplex exhibits several unusually shifted proton resonances which can be accounted for by the ring current contributions of the deoxyguanosinyl and pyrenyl rings of the [AP]dG6 adduct. In summary, intercalation of the aminopyrene moiety is accompanied by displacement of both [AP]dG6 and the partner dC17 into the major groove in the [AP]dG.dC 11-mer duplex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号