首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   23篇
  国内免费   1篇
电工技术   4篇
综合类   1篇
化学工业   65篇
金属工艺   23篇
机械仪表   18篇
建筑科学   24篇
矿业工程   2篇
能源动力   24篇
轻工业   9篇
水利工程   1篇
石油天然气   13篇
无线电   32篇
一般工业技术   116篇
冶金工业   15篇
原子能技术   3篇
自动化技术   62篇
  2023年   7篇
  2022年   7篇
  2021年   17篇
  2020年   8篇
  2019年   17篇
  2018年   25篇
  2017年   19篇
  2016年   21篇
  2015年   12篇
  2014年   16篇
  2013年   30篇
  2012年   28篇
  2011年   16篇
  2010年   22篇
  2009年   27篇
  2008年   14篇
  2007年   18篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   5篇
  1971年   6篇
  1969年   1篇
  1967年   3篇
  1966年   2篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
21.
22.
23.
A comparative study has been performed on the sulfate resistance of Portland limestone cement (PLC) mortars exposed to extraordinary high sulfate concentrations (200 g/l). PLCs have been prepared by using two types of clinkers having different C3S/C2S ratios and interstitial phase morphologies. Blended cements have been prepared by replacing 5%, 10%, 20% and 40% of clinker with limestone. Cubic (50 × 50 × 50 mm) and prismatic (25 × 25 × 285 mm) cement mortars were prepared. After two months initial water curing, these samples were exposed to three different sulfate solutions (Na2SO4 at 20 °C and 5 °C, MgSO4 at 5 °C). Solutions were not refreshed and pH values of solutions were monitored during the testing stage. The compressive strength and length changes of samples have been monitored for a period of 1 year. Additional microstructural analyses have been conducted by XRD and SEM/EDS studies. Results indicated that in general, limestone replacement ratio and low temperature negatively affect the sulfate resistance of cement mortars. Additionally, clinkers of high C3S/C2S ratios with dendritic interstitial phase structure were found to be more prone to sulfate attack in the presence of high amounts of limestone.From the results, it is postulated that in the absence of solution change, extraordinary high sulfate content modified the mechanism of sulfate reactions and formation of related products. At high limestone replacement ratios, XRD and SEM/EDS studies revealed that while ettringite is the main deterioration product for the samples exposed to Na2SO4, gypsum and thaumasite formation were dominant products of deterioration in the case of MgSO4 attack. It can be concluded that, the difference between reaction mechanisms of Na2SO4 and MgSO4 attack to limestone cement mortars strongly depends on the pH change of sulfate solutions.  相似文献   
24.
Nondestructive testing (NDT) methods are widely used for the performance evaluation of flexible pavements. Falling weight deflectometer (FWD), which measures time-domain deflections resulting from applied impulse loads, is the most popular technique among all NDT methods. The evaluation of the FWD data requires the inversion of mechanical pavement properties using a backcalculation tool that includes both a forward pavement response model and an optimization algorithm. Neural networks (NNs) have also emerged as alternative tools that can be employed for pavement backcalculation problems relative to their real-time processing abilities. However, there have been no comprehensive analyses in previous studies that focus on the learning algorithm and the architecture of a NN model, which considerably affect backcalculation results. In this study, 284 different NN models were developed using synthetic training and testing databases obtained by layered elastic theory. Results indicated that both the learning algorithm and network architecture play important roles in the performance of the NN based backcalculation process.  相似文献   
25.
26.
The compatibility of specific combinations of chemical admixtures for cement pastes and mortars have been investigated. The consistency, setting time and compressive strength of cement pastes and mortars incorporating a polycarboxylate-based plasticizing admixture (PCA) with four different set-controlling admixtures (SCA); calcium formate (CF), tri-ethanolamine (TEA), mixture of calcium nitrite and nitrate salts (CNN blend) and sodium aluminate (SA) have been determined within the scope of this study. Fifty-two mortar and paste specimens with different amounts of PCA and SCA combinations have been prepared. Water/cement ratios of cement paste and mortar mixtures were 0.24 and 0.50, respectively. The paste mixtures have been prepared to determine the setting time data and the mortar mixtures have been used to determine the consistency and compressive strength values. Test results indicated that the PCA employed in this study, retards the setting time, improves consistency and reduces the early strength development of all paste and mortar mixtures at dosages greater than 0.4% by mass of cement. However, the use of different set-controlling admixtures in combination with PCA caused drastic changes in the performances of the mixtures depending on the type and amount of SCAs. It was concluded that, in order to reduce the setting time and increase the early strength of PCA incorporated mortars without causing consistency loss, the combination of PCA, and SCA should be optimized according to their types. A new 3D box-plot method has been used to determine the optimum admixture combinations for the desired properties. Maximum flow, shortest setting time and highest early strength criterion were the targets of the optimization. The most effective combination to obtain desired set acceleration and high early strength values was 1.8% PCA with 1.6% nitrite and nitrate salts based SCA by mass of cement. If consistency lost is in secondary importance, 1.8% PCA based plasticiser with 1% sodium aluminate based SCA may be an alternative combination. The proposed method can be used to optimize the targeted properties for a specific combination of cement, PCA and SCA.  相似文献   
27.
28.
A major source of inaccuracy in CNC machines is unwanted vibrations induced by the frequency spectra of reference motion trajectory. This paper presents a novel approach where instead of filtering techniques, axis motion commands are generated with optimal frequency spectra in the first place. Tangential feedrate profile is defined as parametric spline, and its frequency spectrum is optimized with respect to structural dynamics of the machine. The optimization problem is solved efficiently using Quadratic Programming. Experimental results confirm that proposed technique can greatly improve surface finish during machining spline tool-paths without sacrificing from cycle time and contouring performance.  相似文献   
29.
A promising method of measuring surface temperatures in harsh environments is the use of thermographic phosphor coatings. There, the surface temperature is evaluated from the phosphorescence decay lifetime following a pulsed laser or flash lamp light excitation. Depending on the used dopant, single doped M3+:α-Al2O3 (M = Cr, Dy, Tm) emit at 694 nm (Cr3+), 488 nm (Dy3+), 584 nm (Dy3+), and 459 nm (Tm3+), respectively. However, the accessible temperature range with a single dopant is limited: for the Cr3+-transition from 293 K up to 900 K, and for the Dy3+ and Tm3+-transitions both from 1073 K up to 1473 K. In the present study a new approach is followed to extend these limitations by co-doping two dopants using the sol–gel method and dip coating of α-Al2O3 thin films. For that application (Dy3+ + Cr3+) co-doped thin α-Al2O3 films and (Tm3+ + Cr3+) co-doped α-Al2O3 films with thicknesses of 4–6 μm were prepared, and the temperature-dependent luminescence properties (emission spectra and lifetimes) were analysed after pulsed laser excitation in the UV (355 nm). The phosphorescence lifetime as a function of temperature were measured between 293 K and 1473 K. A considerably extended range for surface temperature evaluation was established following this new approach by combining different dopants on the molecular level.  相似文献   
30.
This paper presents design and evaluation of a mechanical nanomanufacturing system for performing the nanomilling process. The nanomilling process uses a nanotool (an atomic force microscope probe tip) that is rotated at high speeds to fabricate three-dimensional (3D) nano-scale features on a sample surface. After explaining the kinematics of the two nanomilling process configurations, the nanomilling system, including the 3D piezoelectric actuator that rotates the nanotool, the nanopositioning stage that provides the feeding and depth motions, and the software program that controls the nanomilling motions are described. A measurement system is then constructed to measure the dynamic nanomilling motions. A compensation algorithm is developed to enable obtaining desired nanotool motions in the presence of frequency and amplitude-dependent nonlinearities of the 3D piezoelectric actuator. The nanomilling system is then evaluated directly by measuring the nanotool motions, and indirectly by assessing the accuracy of the fabricated nanoscale features. It was shown that the nanomilling system facilitates fabrication of complex nano-scale features with high accuracy through the high-stiffness nanotool assembly and high-frequency (compensated) nanotool motions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号