首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43632篇
  免费   13130篇
  国内免费   15篇
电工技术   816篇
综合类   9篇
化学工业   18109篇
金属工艺   573篇
机械仪表   1139篇
建筑科学   1725篇
矿业工程   2篇
能源动力   1073篇
轻工业   7480篇
水利工程   317篇
石油天然气   48篇
武器工业   2篇
无线电   7550篇
一般工业技术   12366篇
冶金工业   789篇
原子能技术   96篇
自动化技术   4683篇
  2024年   7篇
  2023年   71篇
  2022年   122篇
  2021年   378篇
  2020年   1514篇
  2019年   3251篇
  2018年   3201篇
  2017年   3516篇
  2016年   3998篇
  2015年   4045篇
  2014年   4046篇
  2013年   5240篇
  2012年   3036篇
  2011年   2771篇
  2010年   2912篇
  2009年   2771篇
  2008年   2359篇
  2007年   2100篇
  2006年   1872篇
  2005年   1534篇
  2004年   1492篇
  2003年   1451篇
  2002年   1407篇
  2001年   1223篇
  2000年   1158篇
  1999年   555篇
  1998年   192篇
  1997年   119篇
  1996年   81篇
  1995年   43篇
  1994年   56篇
  1993年   44篇
  1992年   41篇
  1991年   33篇
  1990年   15篇
  1989年   14篇
  1988年   13篇
  1987年   16篇
  1986年   15篇
  1985年   10篇
  1984年   9篇
  1983年   14篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1969年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
122.
123.
A series of new o‐phenylenediamine (OPD)/o‐phenetidine (PHT) copolymers with partly phenazine‐like structures has been successfully synthesized at three polymerization temperatures by chemically oxidative polymerization in four different polymerization media. The molecular structures and properties of the resulting OPD/PHT polymers were investigated by IR, UV–vis and high‐resolution 1H NMR spectroscopies, and DSC, in order to ascertain the effect of reaction temperature, comonomer ratio and acid medium. The copolymerization mechanism of OPD with PHT monomers has been proposed. It is found that the statistical OPD/PHT copolymer obtained at a temperature of 118 °C has a higher degree of polymerization than that obtained at 12–17 °C. The OPD content in the copolymers calculated from NMR spectroscopic analysis is higher than that in the feed OPD content, whereas the OPD content calculated from element analysis is slightly lower than the feed OPD content. It can be predicted that denitrogenation takes place in the OPD units during the polymerization process at OPD/PHT molar ratios of 90/10 and 100/0. These OPD/PHT copolymers exhibit a much better solubility than the OPD homopolymer, hence suggesting an incorporation of PHT units into the phenazine structure of the homopolymer. The thermal behavior of the copolymers was also studied. Copyright © 2004 Society of Chemical Industry  相似文献   
124.
Three sorbents were compared in order to determine their potential for oil spill cleanup. Polypropylene nonwoven web, rice hull, and bagasse with two different particle sizes were evaluated in terms of oil sorption capacities and oil recovery efficiencies. Polypropylene can sorb almost 7 to 9 times its weight from different oils. Bagasse, 18 to 45 mesh size, follows polypropylene as the second sorbent in oil spill cleanup. Bagasse, 14 to 18 mesh size, and rice hull have comparable oil sorption capacities, which are lower than those of the two former sorbents. It was found that oil viscosity plays an important role in oil sorption by sorbents. All adsorbents used in this work could remove the oil from the surface of the water preferentially.  相似文献   
125.
Different NMR techniques were combined to obtain the structure and velocity information for a systematic investigation of fixed beds with low aspect ratio (tube diameter to particle diamter, dt/dp) in the range 1.4 to 32. The structure of the void space was determined for a variety of packed beds of glass beads or regular and irregular porous pellets by magnetic resonance imaging (MRI). Based on the images the radial distribution of the voids within the bed was obtained. Ordering effects were found even for non‐spherical and polydisperse particles, and a maximum of the fluid density near the tube wall was confirmed for all pellet geometries and sizes. By combining MRI with velocity encoding, velocity profiles and distributions of flow velocity components of a single fluid phase through packed beds have been acquired. The radial velocity distribution follows an oscillatory pattern which largely reflects the ordering of the particles, which can be accessed from the density distribution of the interparticle fluid. Maximum velocities of up to four times the average value were found to occur near the tube wall. This wall effect was observed for all but the smallest particles, where the aspect ratio was dt/dp = 32. Moreover, a visualisation of flow pattern in the presence of packed particles was achieved by using a tagging technique, and the stationary flow field could be identified for an experimental time of several hours.  相似文献   
126.
With video compression standards such as MPEG‐4, a transmission error happens in a video‐packet basis, rather than in a macroblock basis. In this context, we propose a semantic error prioritization method that determines the size of a video packet based on the importance of its contents. A video packet length is made to be short for an important area such as a facial area in order to reduce the possibility of error accumulation. To facilitate the semantic error prioritization, an efficient hardware algorithm for face tracking is proposed. The increase of hardware complexity is minimal because a motion estimation engine is efficiently re‐used for face tracking. Experimental results demonstrate that the facial area is well protected with the proposed scheme.  相似文献   
127.
The performance of bulk‐heterojunction solar cells based on a phase‐separated mixture of donor and acceptor materials is known to be critically dependent on the morphology of the active layer. Here we use a combination of techniques to resolve the morphology of spin cast films of poly(p‐phenylene vinylene)/methanofullerene blends in three dimensions on a nanometer scale and relate the results to the performance of the corresponding solar cells. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and depth profiling using dynamic time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) clearly show that for the two materials used in this study, 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐methanofullerene (PCBM) and poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV), phase separation is not observed up to 50 wt.‐% PCBM. Nanoscale phase separation throughout the film sets in for concentrations of more than 67 wt.‐% PCBM, to give domains of rather pure PCBM in a homogenous matrix of 50:50 wt.‐% MDMO‐PPV/PCBM. Electrical characterization, under illumination and in the dark, of the corresponding photovoltaic devices revealed a strong increase of power conversion efficiency when the phase‐separated network develops, with a sharp increase of the photocurrent and fill factor between 50 and 67 wt.‐% PCBM. As the phase separation sets in, enhanced electron transport and a reduction of bimolecular charge recombination provide the conditions for improved performance. The results are interpreted in terms of a model that proposes a hierarchical build up of two cooperative interpenetrating networks at different length scales.  相似文献   
128.
Starting with Co‐salt‐loaded inverse micelles, which form if the diblock copolymer polystyrene‐block‐poly(2‐vinylpyridine) is dissolved in a selective solvent like toluene and CoCl2 is added to the solution, monomicellar arrays of such micelles exhibiting a significant hexagonal order can be prepared on top of various substrates with tailored intermicellar distances and structure heights. In order to remove the polymer matrix and to finally obtain arrays of pure Co nanoparticles, the micelles are first exposed to an oxygen plasma, followed by a treatment in a hydrogen plasma. Applying in‐situ X‐ray photoelectron spectroscopy, it is demonstrated that: 1) The oxygen plasma completely removes the polymer, though conserving the original order of the micellar array. Furthermore, the resulting nanoparticles are entirely oxidized with a chemical shift of the Co 2p3/2 line pointing to the formation of Co3O4. 2) By the subsequent hydrogen plasma treatment the nanoparticles are fully reduced to metallic Co. 3) By exposing the pure Co nanoparticles for 100 s to various oxygen partial pressures pequation/tex2gif-inf-5.gif, a stepwise oxidation is observed with a still metallic Co core surrounded by an oxide shell. The data allow the extraction of the thickness of the oxide shell as a function of the total exposure to oxygen (pequation/tex2gif-inf-7.gif × time), thus giving the opportunity to control the ferromagnetic–antiferromagnetic composition of an exchange‐biased magnetic system.  相似文献   
129.
BACKGROUND: Two peat biofilters were used for the removal of toluene from air for one year. One biofilter was fed with pure toluene and the other received 1:1 (by weight) ethyl acetate:toluene mixture. RESULTS: The biofilters were operated under continuous loading: the toluene inlet load (IL) at which 80% removal occurred was 116 g m?3 h?1 at 57 s gas residence time. Maximum elimination capacity of 360 g m?3 h?1 was obtained at an IL of 745 g m?3 h?1. The elimination of toluene was inhibited by the presence of ethyl acetate. Intermittent loading, with pollutants supplied for 16 h/day, 5 days/week, did not significantly affect the removal efficiency (RE). Biomass was fully activated in 2 h after night closures, but 6 h were required to recover RE after weekend closures. Live cell density remained relatively constant over the operational period, while the dead cell fraction increased. Finally, a 15 day starvation period was applied and operation then re‐started. Performance was restored with similar re‐acclimatization period to that after weekend closures, and a reduction in dead cell fraction was observed. CONCLUSION: This study demonstrates the capacity of the system to handle intermittent loading conditions that are common in industrial practices, including long‐term starvation. Copyright © 2008 Society of Chemical Industry  相似文献   
130.
BACKGROUND: Many industrial discharges, such as those generated from petrochemical refineries, contain large amounts of sulfurous, nitrogenous and organic contaminants. Denitrification has emerged as a suitable technology for the simultaneous removal of these pollutants in a single reactor unit; however, more evidence is demanded to clarify the limitations of denitrification on the simultaneous removal of sulfide and phenolic contaminants and to optimize the biological process. The aim of this study was to evaluate the capacity of a denitrifying sludge to simultaneously convert sulfide and p‐cresol via denitrification. RESULTS: Sulfide was the preferred electron donor over p‐cresol, imposing a 5 h lag phase (required for complete sulfide removal) on organotrophic denitrification. Addition of sulfide (20 mg S2? L?1) to p‐cresol‐amended denitrifying cultures also decreased the reduction rate of nitrate and nitrite, as well as the production rate of nitrogen gas. Nitrite reduction rate was the most affected step by sulfide, decreasing from 35 to 21 mg N (g VSS d)?1. A synergistic inhibitory effect of nitrate and sulfide was also observed on nitrite reduction. Despite the effects of sulfide on the respiratory rates monitored, complete removal of nitrate, sulfide and p‐cresol could be achieved after 48 h of incubation. CONCLUSION: Our results suggest that simultaneous removal of sulfide and p‐cresol could be achieved in denitrifying reactors, but a large hydraulic residence time may be required to sustain an efficient process due to inhibitory effects of sulfide. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号