首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2856篇
  免费   103篇
  国内免费   20篇
电工技术   44篇
综合类   12篇
化学工业   567篇
金属工艺   41篇
机械仪表   61篇
建筑科学   68篇
矿业工程   4篇
能源动力   130篇
轻工业   305篇
水利工程   16篇
石油天然气   46篇
武器工业   1篇
无线电   530篇
一般工业技术   447篇
冶金工业   272篇
原子能技术   10篇
自动化技术   425篇
  2024年   16篇
  2023年   17篇
  2022年   33篇
  2021年   53篇
  2020年   40篇
  2019年   57篇
  2018年   63篇
  2017年   128篇
  2016年   64篇
  2015年   56篇
  2014年   99篇
  2013年   190篇
  2012年   130篇
  2011年   191篇
  2010年   143篇
  2009年   141篇
  2008年   129篇
  2007年   104篇
  2006年   103篇
  2005年   133篇
  2004年   125篇
  2003年   95篇
  2002年   74篇
  2001年   62篇
  2000年   63篇
  1999年   57篇
  1998年   83篇
  1997年   52篇
  1996年   43篇
  1995年   32篇
  1994年   47篇
  1993年   53篇
  1992年   43篇
  1991年   29篇
  1990年   11篇
  1989年   28篇
  1988年   17篇
  1987年   20篇
  1986年   15篇
  1985年   14篇
  1984年   13篇
  1983年   11篇
  1982年   9篇
  1981年   12篇
  1980年   14篇
  1979年   8篇
  1978年   8篇
  1977年   9篇
  1975年   7篇
  1970年   10篇
排序方式: 共有2979条查询结果,搜索用时 15 毫秒
11.
In this study, the mechanical properties critical to the protective performance of firefighter turnout gear were evaluated for environmentally stressed outer shell (OS) fabrics containing melamine fiber blends. Environmental stress factors that affect the durability of turnout gear include temperature, ultraviolet (UV) radiation, moisture, abrasion, and laundering. The effect of fiber blend, fabric construction, and finishing processes including water repellent coatings and pigmented melamine-containing OS fabrics were also studied. Melamine-containing OS fabrics show comparable thermal protective performance and have superior tear resistance when compared to the traditionally used polyaramid blends. This study reveals that the thermal protective protection (TPP) rating of fabric assemblies incorporating environmentally stressed OS fabrics containing melamine fiber blends is well above the NFPA minimum TPP requirement of 35 cal/cm2. However, the tear strength (measured using ASTM D 5587 standard test method) of all melamine-containing OS fabrics exposed to environmental stresses was observed to have significantly deteriorated, and most OS fabrics, depending on fiber blend and fabric structure, would fail to meet requirements of NFPA 1971 standard. The study thus suggests that environmental stressing has a more detrimental impact on the tear strength than the thermal protective performance of OS fabrics. Deterioration in tear strength of all UV exposed OS fabrics is largely due to photodegradation of constituent fibers. Changes in tear strength of OS fabrics subjected to thermal exposures and laundering is cumulative effect of loss in tensile strength of single yarns and dimensional stability of the fabric itself. Furthermore, finishing treatments affect performance properties of fabric by increasing fiber packing factor in yarn, changing yarn crimp and yarn spacing thereby making dimensional changes to the fabric. Surface coatings alter tear resistance of fabric by influencing yarn slippage and fabric rigidity. Fabrics dyed with black and dark blue dyes cause less UV degradation of fibers than bright yellow and brown dyes.  相似文献   
12.
In this study, two kinematically admissible velocity fields are derived for the proposed three-dimensional convex circular parallelepiped and convex spherical UBET elements. Those elements are applied to three-dimensional closed-die forging having convex curve surfaces; the capability of the proposed elements is then demonstrated. From the derived velocity fields, the upper-bound loads on the upper die and the velocity field are determined by minimizing the total energy consumption with respect to some chosen parameters. Also, experiments of two closed-die forgings are performed with commercial pure lead billets at the ambient temperature. The theoretical predictions of the forming load correlated well with the experimental results. The results in this study confirm that the elements proposed in this work can effectively be used to predict the forming load accurately in three-dimensional closed-die forging with convex curve surfaces.  相似文献   
13.
Jung Lin C  Lo SL 《Water research》2005,39(6):1037-1046
The decline of trichloroethylene (TCE) in a metallic iron-water system results from the combination of reduction reaction and sorption onto iron surfaces. Sorption, particularly by highly impure iron, accelerates the removal of TCE from the aqueous phase, but delays the prevalence of steady-state conditions. In this case, an overly high value of reaction rate constant in the design of a treatment system would be used. In this work, the effects of an iron surface with 8.0% C, 6.1% O and 0.8% Si separately following HCl-washing and H2-reducing pretreatment on sorption and reduction rates were examined. The amounts of both aqueous and sorbed TCE were measured using a modified solvent-extraction method. TCE sorption onto an iron surface, as quantified by the Langmuir sorption maximum, followed the trend H2-reduced Fe0 > HCl-washed Fe0 > untreated Fe0 (0.887, 0.365 and 0.311 mg/g, respectively). Measurements of the concentration of sorbed TCE revealed that about 34-37% of the initial mass of TCE in the aqueous phase was removed by sorption by H2-reduced Fe0, 16-19% was removed by HCl-washed Fe0 and 13-16% was removed by untreated Fe0. A combination of new and previously reported data on cast iron's capacity to sorb TCE revealed a linear relationship between this capacity and the C fraction in the surface of the iron, with the coefficient of determination (r2) exceeding 0.99. The first-order observed rate constants (k(obs)) of the reduction of TCE in contact with Fe0 were obtained from the slope of a plot of total TCE loss rate (-dC(T)/dt) versus the amount of TCE in the aqueous phase (C(w)) using linear least-squares analysis. The k(obs) values were 0.080, 0.148 and 0.191 h(-1) for untreated, HCl-washed and H2-reduced Fe0, respectively. Normalized to iron surface area concentration, the specific rate constants (k(SA)) were 2.3 7x 10(-3) , 2.31 x 10(-3) and 5.62 x 10(-3) h(-1) m(-2) L, respectively. The results indicated that HCl-washing approximately doubled k(obs), primarily because of the increase in the surface area of the iron, and it slightly decreased k(SA) due to rapid corrosion during the rinsing process. Both the number of reactive sites and the sorption capacity per unit iron surface area through the H2-reducing pretreatment were increased due to the reduction of iron oxide layer and the carbonization of carbon-containing subjects on the iron's surface. Hence, the H2 reduction of cast iron promotes the removal of TCE from contaminated water by the concurrent sorption and reduction.  相似文献   
14.
Biofilters are promising technologies that widely applied in the treatment of urban stormwater. However, the microbial removal capacity performance depends greatly on the design of biofilters. Hence, this laboratory study attempts to investigate the influence of filter media depths (i.e. 150, 250, 350 and 450 mm) and the variation of native plants, that is, Cow Grass (Axonopus compressus) and Pearl Grass (Axonopus compressus, dwarf) in removing stormwater microorganism particularly Faecal Coliform (FC). Findings showed that a minimum media depth of 300 mm was required to achieve >1 log FC removal. The mean removal of FC at 450 mm depth filter exceeded 2 log for both Cow and Pearl grass biofilter columns. Results showed that there was no statistically significant difference in vegetation type on the performance of FC removal, however, Cow grass biofilter column revealed higher FC mean log removal compared to Pearl grass biofilter column.  相似文献   
15.
In the context of nonlinear dynamic system identification for Hammerstein systems, Rollins et al. (2003a) studied the information efficiency of the following two competing experimental design approaches: statistical design of experiments (SDOE) and pseudo-random sequences design (PRSD). The focus of this study is the Wiener system and evaluates SDOE against PRS under D-optimal efficiency. Three cases are evaluated and the results strongly support SDOE as the better approach.  相似文献   
16.
Water at the polymer/substrate interface is often the major cause of adhesion loss in coatings, adhesives, and fiber-reinforced polymer composites. This study critically assesses the relationship between the interfacial water layer and the adhesion loss in epoxy/siliceous substrate systems. Both untreated and silane-treated Si substrates and untreated and silane-treated E-glass fibers were used. Thickness of the interfacial water layer was measured on epoxy/Si systems by Fourier transform infrared-multiple total internal reflection (FTIR-MTIR) spectroscopy. Adhesion loss of epoxy/Si systems and epoxy/E-glass fiber composites was measured by peel adhesion and short-beam shear tests, respectively. Little water accumulation at the epoxy/Si substrate interface was observed for silane-treated Si substrates, but about 10 monolayers of water accumulated at the interface between the epoxy and the untreated Si substrate following 100 h of exposure at 24 °C. More than 70% of the initial epoxy/untreated Si system peel strength was lost within 75 h of exposure, compared with 20% loss after 600 h for the silane-treated Si samples. Shear strength loss in composites made with untreated E-glass fiber was nearly twice that of composites fabricated with silane-treated fiber after 6 months of immersion in 60 °C water. Further, the silane-treated composites remained transparent, but the untreated fiber composites became opaque after water exposure. Evidence from FTIR-MTIR spectroscopy, adhesion loss, and visual observation strongly indicated that a water layer at the polymer/substrate interface is mostly responsible for the adhesion loss of epoxy/untreated siliceous substrate systems and epoxy/untreated glass fiber composites and that FTIR-MTIR is a viable technique to reliably and conveniently assess the adhesion loss attributable to water sorption at the interface.  相似文献   
17.
Paul Chin  David F. Ollis   《Catalysis Today》2007,123(1-4):177-188
The air–solid photocatalytic degradation of organic dye films Acid Blue 9 (AB9) and Reactive Black 5 (RBk5) is studied on Pilkington Activ™ glass. The Activ™ glass comprises of a colorless TiO2 layer deposited on clear glass. The Activ™ glass is characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). Using AFM, the TiO2 average agglomerate particle size is 95 nm, with an apparent TiO2 thickness of 12 nm. The XRD results indicate the anatase phase of TiO2, with a calculated crystallite size of 18 nm.

Dyes AB9 and RBk5 are deposited in a liquid film and dried on the Activ™ glass to test for photodecolorization in air, using eight UVA blacklight-blue fluorescent lamps with an average UVA irradiance of 1.4 mW/cm2. A novel horizontal coat method is used for dye deposition, minimizing the amount of solution used while forming a fairly uniform dye layer. About 35–75 monolayers of dye are placed on the Activ™ glass, with a covered area of 7–10 cm2. Dye degradation is observed visually and via UV–vis spectroscopy.

The kinetics of photodecolorization satisfactorily fit a two-step series reaction model, indicating that the dye degrades to a single colored intermediate compound before reaching its final colorless product(s). Each reaction step follows a simple irreversible first-order reaction rate form. The average k1 is 0.017 and 0.021 min−1 for AB9 and RBk5, respectively, and the corresponding average k2 is 2.0 × 10−3 and 1.5 × 10−3 min−1. Variable light intensity experiments reveal a p = 0.44 ± 0.02 exponent dependency of initial decolorization rate on the UV irradiance. Solar experiments are conducted outdoors with an average temperature, water vapor density, and UVA irradiance of 30.8 °C, 6.4 g water/m3 dry air, and 1.5 mW/cm2, respectively. For AB9, the average solar k1 is 0.041 min−1 and k2 is 5.7 × 10−3 min−1.  相似文献   

18.
For this study, we first prepared a fluorocarbon polymer and its hybrid materials. We found that fluorocarbon copolymers can produce hydrogen bonds with SiO2 to form hybrid materials. We also used thermogravimetric analyzer and tested the thermostabilities of the four products, which were ranked as follows: fluorocarbon copolymer/SiO2 hybrid material > fluorocarbon polymer/SiO2 hybrid material > fluorocarbon copolymer > fluorocarbon polymer. In addition, we found that, due to the inorganic SiO2 used, the number of pores and the specific surface areas of the hybrid materials both increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1140–1145, 2007  相似文献   
19.
Optimization of lipase‐catalyzed esterification for the production of medium‐chain triacylglycerols (MCT) from palm kernel oil distillate and glycerol was carried out in order to determine the factors that have significant effects on the reaction system and MCT yield. Novozyme 435 from Candida antarctica lipase was found to have the highest activity at 52.87 ± 0.03 U/g. This lipase also produced the highest MCT yield, which is 56.67%. The effect of different variables on MCT synthesis was studied with a two‐level five‐factor fractional factorial design. The various variables include (1) reaction temperature, (2) enzyme load, (3) molecular sieves concentration, (4) reaction time and (5) molar substrate ratio. Reaction temperature, reaction time and molar substrate ratio strongly affect MCT synthesis (p <0.05). However, enzyme load and molecular sieve concentration did not have a significant (p >0.05) influence on MCT yield. Therefore, the significant variables such as reaction temperature, reaction time and molar substrate ratio were further optimized through central composite rotatable design (CCRD). Comparisons between predicted and experimental values from the CCRD optimization procedures revealed good correlation, implying that the quadric response model satisfactorily expressed the percentage yield of MCT in the lipase‐catalyzed esterification. The optimum MCT yield is 73.3% by using 2 wt‐% enzyme dosage, a molecular sieves concentration of 1 wt‐%, a reaction temperature of 90 °C, a reaction time of 10 h and a molar substrate ratio of 4 : 1 (medium‐chain fatty acid/glycerol). Experiments to confirm the predicted results using the optimal parameters were conducted and an MCT yield of 70.21 ± 0.18% (n = 3) was obtained.  相似文献   
20.
CC49 is a clinically validated antibody with specificity for TAG-72, a carbohydrate epitope that is over-expressed and exposed on a large fraction of solid malignancies. We constructed a single chain fragment (scFv) based on CC49 and fused it to beta-lactamase. The first generation fusion protein, TAB2.4, was expressed at low levels in Escherichia coli and significant degradation was observed during production. We optimized the scFv domain of TAB2.4 by Combinatorial Consensus Mutagenesis (CCM). An improved variant TAB2.5 was identified that resulted in an almost 4-fold improved expression and 2.5 degrees higher thermostability relative to its parent molecule. Soluble TAB2.5 can be manufactured in low-density E.coli cultures at 120 mg/l. Our studies suggest that CCM is a rapid and efficient method to generate antibody fragments with improved stability and expression. The fusion protein TAB2.5 can be used for antibody directed enzyme prodrug therapy (ADEPT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号