首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246752篇
  免费   20501篇
  国内免费   10862篇
电工技术   14813篇
技术理论   13篇
综合类   14459篇
化学工业   38803篇
金属工艺   14309篇
机械仪表   15341篇
建筑科学   16032篇
矿业工程   6319篇
能源动力   6154篇
轻工业   14788篇
水利工程   4912篇
石油天然气   12723篇
武器工业   1961篇
无线电   28630篇
一般工业技术   35663篇
冶金工业   15035篇
原子能技术   5913篇
自动化技术   32247篇
  2024年   902篇
  2023年   3457篇
  2022年   7146篇
  2021年   10207篇
  2020年   7503篇
  2019年   6136篇
  2018年   7576篇
  2017年   8262篇
  2016年   7548篇
  2015年   9349篇
  2014年   12091篇
  2013年   14849篇
  2012年   16335篇
  2011年   17329篇
  2010年   14992篇
  2009年   14539篇
  2008年   14020篇
  2007年   12934篇
  2006年   11596篇
  2005年   9698篇
  2004年   7159篇
  2003年   6409篇
  2002年   6236篇
  2001年   5507篇
  2000年   4775篇
  1999年   4258篇
  1998年   3677篇
  1997年   3004篇
  1996年   2603篇
  1995年   2199篇
  1994年   1868篇
  1993年   1604篇
  1992年   1442篇
  1991年   1268篇
  1990年   1248篇
  1989年   1132篇
  1988年   1019篇
  1987年   927篇
  1986年   852篇
  1985年   763篇
  1984年   753篇
  1981年   724篇
  1979年   792篇
  1978年   816篇
  1977年   790篇
  1976年   809篇
  1975年   734篇
  1974年   739篇
  1973年   742篇
  1972年   719篇
排序方式: 共有10000条查询结果,搜索用时 662 毫秒
131.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
132.
133.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
134.
Frozen milk can help producers overcome the seasonality of goat milk production, low goat production and short lactation periods, and avoid discarding milk during some special periods. We investigated effects of combination between freezing (cryogenic refrigerator of ?16 to ?20°C or ultra-cryogenic refrigerator of ?76 to ?80°C) and thawing (homeothermy of 20 to 25°C or refrigeration of 2 to 4°C) on nutritive compositions and physicochemical characteristics of raw goat milk during storage period (80 d). Compared with fresh goat milk, the frozen-thawed milk decreased contents of fat, protein, and lactose, as well as surface tension and stability coefficient, whereas increased effective diameter and polydispersity index. The average values of color values (L*, a*, and b*) in 4 group samples changed from 83.01 to 82.25, ?1.40 to ?1.54, 3.51 to 3.81, respectively, and the ΔE of most samples did not exceed 2. In contrast to the other 3 frozen-thawed treatments, goat milk treated with ultra-cryogenic freezing-homeothermic thawing (UFHT) possessed higher fat (5.20 g/100 g), smaller effective particle diameter (0.32 µm), and the lowest polydispersity index value (0.26). The color and confocal laser scanning microscopy images of UFHT were similar to those of fresh goat milk, illustrating UFHT was the optimal approach to maintain the natural quality of goat milk. Our finding provides a theoretical basis for producers to freeze surplus milk.  相似文献   
135.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
136.
Incompressible dipping substrata are commonly encountered in engineering practice. Compared to horizontal underlying strata, the inclined underlying stratum increase the risk of collapse of embankments reinforced with columns because it weakens the restraint of the column base. The objective of this study is to investigate the effectiveness of geosynthetics on improving the embankment stability when the underlying stratum is inclined. The influence of geosynthetic tensile stiffness on the ultimate surcharge and failure mechanism is studied. A deep-seated failure with column tilting occurs when the geosynthetic tensile stiffness is low, whereas a lateral sliding occurs when the geosynthetic tensile stiffness is high. To illustrate the contribution of geosynthetics, the distribution of the lateral pressures acting on the columns is analyzed.  相似文献   
137.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
138.
Journal of Communications Technology and Electronics - Approximate formulas for calculating the coefficient of reflection from an artificial magnetic conductor (AMC) based on a capacitive lattice...  相似文献   
139.
Theoretical Foundations of Chemical Engineering - A choline chloride–sulfosalicylic acid deep eutectic solvent (DES) is proposed for dissolving the oxides Co(II), Cu(II), Zn(II), Fe(III),...  相似文献   
140.
Atomic Energy - The results of calculations and experimental determination of the neutronics characteristics of the IRT-T research reactor are presented. The IRT-T reactor is a pool reactor with...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号