首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   53篇
  国内免费   3篇
电工技术   11篇
综合类   2篇
化学工业   98篇
金属工艺   22篇
机械仪表   14篇
建筑科学   5篇
矿业工程   1篇
能源动力   35篇
轻工业   76篇
水利工程   6篇
石油天然气   5篇
无线电   39篇
一般工业技术   87篇
冶金工业   32篇
原子能技术   1篇
自动化技术   64篇
  2024年   2篇
  2023年   14篇
  2022年   43篇
  2021年   57篇
  2020年   36篇
  2019年   26篇
  2018年   40篇
  2017年   34篇
  2016年   16篇
  2015年   9篇
  2014年   28篇
  2013年   25篇
  2012年   18篇
  2011年   20篇
  2010年   14篇
  2009年   13篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   2篇
  2003年   6篇
  2000年   1篇
  1999年   2篇
  1998年   10篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   5篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有498条查询结果,搜索用时 304 毫秒
51.
The high capacity anode material is required to replace the most commonly used anode - graphite to keep up the global demand to achieve the goal. Multi-metal oxide has gained keen attention for its higher theoretical capacity and relatively stable than a single metal oxide. α-SnWO4 has a theoretical capacity of 850 mAh g?1 which is greater than graphite (372 mAh g?1). α-SnWO4 has been synthesized through low-temperature hydrothermal method using tin chloride and sodium tungstate as a precursor in acidic medium (succinic acid) at 200 °C for 12 h. The obtained product has been characterized using various analytical tools such as XRD, FT-IR, UV-DRS, BET, PL, SEM, and HR-TEM. XRD analysis shows the orthorhombic phase with a crystallite size of ~25 nm α-SnWO4has been examined as an electrode material for Li-ion battery (LIB) and displays an initial discharge capacity of 985 mAh g?1. Columbic efficiency close to 100% has been observed for 100 cycles. The stability of the electrode material was studied at different C-rates. Band-gap calculated using UV-DRS (Eg = 1.9 eV) shows that α-SnWO4 is a good candidate for photocatalytic degradation. Results of the photocatalytic experiment using methylene blue (MB) as a model pollutant in an aqueous medium shows good results. The above applications show that α-SnWO4 is multifunctional materials for diverse applications.  相似文献   
52.
Water Resources Management - Climate change will modify the spatio-temporal variation of hydrological variables worldwide, potentially leading to more extreme events and hydraulic infrastructure...  相似文献   
53.
54.
In this work, polyethylene glycol (PEG) as a phase change material (PCM) was incorporated with palygorskite (Pal) clay to develop a novel form-stable composite PCM (F-SCPCM). The Pal/PEG(40 wt%) composite was defined as F-SCPCM and characterized using SEM/EDS, FT-IR, XRD, DSC, and TGA techniques. The DSC results revealed that the F-SCPCM has a melting temperature of 32.5°C and latent heat capacity of 64.3 J/g for thermal energy storage (TES) applications. Thermal cycling test showed that the F-SCPCM had good cycling thermal/chemical stability after 500 cycles. The TGA data proved that that both cycled and non-cycled F-SCPCMs had considerable high thermal durability. Consequently, the created F-SCPCM could be considered as an additive material for production of green construction components with TES capability. POLYM. ENG. SCI., 60:909–916, 2020. © 2020 Society of Plastics Engineers  相似文献   
55.
Multimedia Tools and Applications - Analysis of facial images decoding familial features has been attracting the attention of researchers to develop a computerized system interested in determining...  相似文献   
56.
57.
Magnetic Resonance Materials in Physics, Biology and Medicine - Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, acquisitions and...  相似文献   
58.
A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.  相似文献   
59.
High cost and complex fabrication process of inorganic membranes and lower position of pristine polymeric membranes in the Robeson upper bound curve urged the researchers to develop mixed matrix membranes (MMMs). Cellulose acetate being most commercially used polymer, dominates the market of CO2 separation mainly because of low cost and environmental friendly resource. In the present study, MMMs consists of amine functionalized zeolitic imidazolate framework (NH2-ZIF-8) and cellulose triacetate were fabricated for the first time. NH2-ZIF-8 was used as a filler because the pore size of ZIF-8 is between the kinetic diameter of separating gases (CO2 and CH4). Moreover,  NH2 group attached on the surface of ZIF-8 has affinity with condensable gases like CO2. Morphology, crystallinity, tensile strength and functional groups of fabricated membranes were investigated using different analytical techniques. Results revealed that the increase of feed pressure has increased CO2 permeability and decreased permselectivity. However, improvements in gas separation performance were observed with the addition of nanofiller. Best position in Robeson's upper bound curve at 4 bar was obtained with 10 wt% loading with CO2 permeability and CO2/CH4 permselectivity of 218 barrer and 13.84, respectively. The improvement in the gas separation performance with loading is attributed to the increased diffusion coefficients as well as solubility coefficients, which was increased to 33% and 3.8%, respectively.  相似文献   
60.
The photocatalytic hydrogen generation is a novel, eco-friendly and favourable method for production of green and clean energy using light energy. In this direction, we report low-temperature ionothermal method for the preparation of TiO2 nanoparticles (NPs) using methoxy ethyl methyl imidazolium tris (pentafluoroethyl) trifluoro phosphate (MOEMINtf2) as an ionic liquid (IL) at 120°C for 1 day. The synthesized nanomaterials were examined using different spectrochemical methods like UV-DRS, XRD, FT-IR, TEM, BET and TGA-DTA techniques. The mixed phase TiO2 is obtained with 81.7% of anatase and 18.3% of rutile phase by the XRD studies, and average crystallite size is found to be ∼7 nm. The stretching of Ti-O bond (∼555 cm−1) and few other bands related to ionic liquid were confirmed by FTIR spectrum. The band gap energy was observed to be ∼3.38 eV by UV-DRS analysis. TEM images reveal spherical shape with an average particles size of about 10 nm. Photocatalytic H2 generation was carried out using TiO2 NPs and observed the generation of 553 μmol h−1 g−1 via water splitting reaction. Furthermore, the prepared TiO2 NPs employed for the photocatalytic degradation of methylene blue dye (84.54%), and photoluminescence studies confirms the obtained material can be used in optoelectronic applications with green emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号