首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99491篇
  免费   1375篇
  国内免费   448篇
电工技术   1009篇
综合类   2341篇
化学工业   13654篇
金属工艺   5081篇
机械仪表   3384篇
建筑科学   2910篇
矿业工程   595篇
能源动力   1464篇
轻工业   5493篇
水利工程   1408篇
石油天然气   384篇
无线电   10835篇
一般工业技术   18615篇
冶金工业   6075篇
原子能技术   437篇
自动化技术   27629篇
  2022年   138篇
  2021年   255篇
  2020年   167篇
  2019年   237篇
  2018年   14673篇
  2017年   13608篇
  2016年   10249篇
  2015年   828篇
  2014年   596篇
  2013年   1055篇
  2012年   3770篇
  2011年   10174篇
  2010年   8870篇
  2009年   6123篇
  2008年   7457篇
  2007年   8408篇
  2006年   718篇
  2005年   1749篇
  2004年   1534篇
  2003年   1585篇
  2002年   936篇
  2001年   461篇
  2000年   532篇
  1999年   439篇
  1998年   1102篇
  1997年   700篇
  1996年   556篇
  1995年   400篇
  1994年   323篇
  1993年   321篇
  1992年   200篇
  1991年   181篇
  1990年   163篇
  1989年   164篇
  1988年   160篇
  1987年   124篇
  1986年   128篇
  1985年   173篇
  1984年   128篇
  1983年   102篇
  1982年   83篇
  1981年   105篇
  1980年   98篇
  1979年   105篇
  1977年   114篇
  1976年   163篇
  1973年   63篇
  1968年   66篇
  1955年   66篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We investigate the relationship between superconductivity and spin glasses, which were observed to be coexistent in heavy fermion superconductors (HFSs). We begin by explaining the phase of spin glass using concepts of finite-sized block spin. We then introduce the phase of superconductivity in HFSs as collective Cooper pairing, that is, the pairing of block spins with net spin = 1/2, each of which is comprised of a large number of random spins that together produce a majority spin direction. The superconducting Bardeen-Cooper-Schrieffer (BCS)-type phonon-mediated electron-electron interaction is substituted for the BCS-type electron-electron interaction mediated by phonon-enhanced spin flips previously suggested by us. An effective charge of any value stemming from an electron attached to the flux of an electric field can be referred to as a composite charge. The distinguished difference between ours and the original BCS model is the following: (i) another BCS-type interaction, (ii) bare electrons that are substituted for block spins with net spin = 1/2 and net charge = e in the presence of electric fields, and (iii) Fermi-Dirac distributions that are replaced by a new distribution called as Brillouin distribution.  相似文献   
992.
Traces of superconductivity (SC) were observed in three different inhomogeneous sulfur-doped amorphous carbon (a-C) systems: (i) in old commercial powder, (ii) in fabricated (by pyrolytic decomposition of sucrose) powder, and (iii) in a-C thin films. (i) The commercial a-C powder contains 0.21 at% sulfur and reveals traces of two superconducting phases around T C ?34 and T C~65 K. (ii) The fabricated a-C powder is diamagnetic but not superconducting. However, mixtures of this powder with sulfur (a-CS) which were heated to 250 °C also show traces of SC up to T C~42 K. (iii) Non-superconducting a-C thin films were grown by electron-beam induced deposition. SC at T C~34 K emerged only after heat treatment with sulfur. It is proposed that the high SC states in a-CS (T C~65 K at ambient pressure) and in H3S materials (T C = 203 K under >200 GPa) has the same origin. In both sulfur-containing systems, SC is induced by the interaction between electrons and the high frequencies of low mass atom (H or C) vibrations a-CS products obtained by heating commercial and fabricated a-C powders at 400 °C show unusual magnetic features: (a) pronounced irreversible peaks around 55–80 K which appear in the first zero-field-cooled (ZFC) runs only. This temperature range is close to the highest T C observed. (b) These peaks are totally suppressed in the second ZFC sweeps measured a few minutes later. (c) The peaks reappear after 18 months. (d) Around the peak position, the field-cooled (FC) curves cross the ZFC plots (ZFC > FC). All these phenomena are intrinsic properties of the amorphous carbon materials and were not observed in crystalline graphite. The ZFC > FC state was also observed in chiral-based magnetic memory device and unexpectedly in the liver taken from a patient with mantle cell lymphoma. This peculiarity will be discussed.  相似文献   
993.
In the present work, reflectance properties of one-dimensional photonic crystal (1D PC) containing a metamaterial and high-temperature superconductor have been investigated theoretically and analyzed. The reflectance/transmittance spectrum of the proposed structure is obtained by using the characteristic or transfer-matrix method (TMM). The results show that by increasing the thickness of the metamaterial layer, the width of the second reflection band decreases while the width of the first reflection band remains almost the same though it shifts towards the higher frequency side. In addition to this, a new band gap arises in the lower side of frequency. But, when the thickness of the superconductor layer is increased, the width of both the bands increases and no additional band arises in this case. Moreover, the reflection band is also affected by varying the operating temperature of the superconducting layer and the results show that bands get narrower by increasing the operating temperature. Finally, the effect of incident angle on the reflection band has been discussed for both transverse electric (TE) and transverse magnetic (TM) polarizations.  相似文献   
994.
Half-metallic ferromagnetism in the Ga1 ? xCr x N compound at different concentrations, x = 25, 12.5 and 6.25 %, have been investigated using density functional theory as implemented in code Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) using LDA + U as exchange-correlation (XC) potential, to find out the possibility of new diluted DMSs. The outcomes reveal that transition metal atom (Cr) doping in GaN induces ferromagnetism. The 3d levels of the TM ion originate a half-metallic gap at the Fermi level in the majority spin channel for all concentrations. Moreover, diluted magnetic semiconductor compounds retain the half-metallic nature at all concentrations, i.e., x = 0.25, 0.125 and 0.0625, with 100 % spin polarization at the Fermi level (E F). The total magnetic moment of these compounds is due to Cr-3d states, and the existence of a small magnetic moment on Ga and N, non-magnetic atoms, for all doping concentrations is a consequence of p-d hybridization of Cr-d and N-p states. The calculated values of s-d exchange constant N α and p-d exchange constant N βconfirm the ferromagnetic character of the Cr-doped GaN compound.  相似文献   
995.
Tetragonal BiFeO3 (BFO), which has a giant spontaneous polarization, has attracted a great deal of attention recently. In this paper, we systematically study the structural, magnetic, electronic and optic properties of BFO, BiFe0.75Mn0.25 O 3 (BFMM), and BiFe0.75Ti0.125Mn0.125 O 3 (BFMT). Results show that doping Ti and Mn into the Fe sites increases the c/a ratio and enhances the magnetization of BiFeO3 from 0 to 5 μB. The crystal symmetry changes from orthogonality to tetragonality with half of the Mn atoms being replaced by Ti in BiFe0.75Mn0.25 O 3, which suppresses the energy splitting of the Mn 3d orbitals and thus enlarge the band gap to 1.21 eV for BiFe0.75Ti0.125Mn0.125 O 3. Our calculated Bader charge and charge density difference show that the smallest volume of BiFe0.75Mn0.25 O 3 arises from the strong Mn–O bonds in BiFe0.75Mn0.25 O 3. Further investigations indicate similar optical behaviors for BiFeO3 and BiFe0.75Ti0.125Mn0.125 O 3. However, BiFe0.75Mn0.25 O 3 exhibits strong absorption in the infrared region for the transition from O 2p to Mn \({e_{g}^{2}}\) and \(t_{2g}^{3}\).  相似文献   
996.
In this report, we studied various structural and optical properties of pure and copper-doped cadmium oxide (CdO) thin films. Nanostructured Cu-doped CdO films were deposited using sol–gel spin-coating technique. The structural and morphological changes have been observed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) studies. The optical and electrical properties of the pure and Cu-doped CdO thin films were studied by UV–vis spectroscopy and four-point probe method, respectively. The XRD peaks show the formation of nanocrystalline CdO with cubic face-centered crystal structure. The band gaps of the as deposited films were found in the range of 2.32–2.73 eV, while after doping, it decreases due to structural deformation. The electrical resitivity was found to decrease approximately ~10 in Cu-doped CdO thin films.  相似文献   
997.
In this study, we report the results of an investigation into the sintering temperature dependence of magnetic and transport properties for GdBaCo2 O 5 + δ synthesized through a sol-gel method. The lowering of sintering temperature leads to the increase of oxygen content and the reduction of grain size. The increase of oxygen content results in the enhancement of magnetic interactions and the weakening of Coulomb repulsion effect, while the reduction of grain size improves the magnetoresistance effect. Metal-insulator transition accompanied with spin-state transition is observed in all samples.  相似文献   
998.
The superconducting properties of Nb2PdS5 superconductor have been investigated with Ni doping at Pd site All the bulk polycrystalline Nb2Pd1?xNix S 5 (0 = x ≤ 0.10) samples are crystallized in singlephase monoclinic structure. The electrical resistivity and magnetic measurements of Nb2Pd1?xNix S 5 (0 = x ≤ 0.15) were carried out to study the variation of superconducting critical parameters with Ni doping. Superconductivity in Nb2PdS5 sample completely disappears for x ≥ 0.15. We observed that the ratio of upper critical field to transition temperature decreases with increasing Ni concentration. Also, the magnetization study of Nb2Pd1?xNix S 5 (0 = x ≤ 0.15) samples shows similar superconducting behaviour. In summary, the superconductivity in Nb2PdS5 sample is slightly varying with partial doping of Ni at Pd site in Nb2PdS5 superconductor.  相似文献   
999.
Z r S e 2 is a band semiconductor studied long time ago. It has interesting electronic properties, and because its layer structure can be intercalated with different atoms to change some of the physical properties. In this investigation, we found that Zr deficiencies alter the semiconducting behavior and the compound can be turned into a superconductor. In this paper, we report our studies related to this discovery. The decreasing of the number of Zr atoms in small proportion according to the formula Zr x Se2, where x is varied from about 8.1 to 8.6 K, changing the semiconducting behavior to a superconductor with transition temperatures ranging between 7.8 and 8.5 K, is depending on the deficiencies. Outside of those ranges, the compound behaves as semiconducting with the properties already known. In our experiments, we found that this new superconductor has only a very small fraction of superconducting material determined by magnetic measurements with applied magnetic field of 10 Oe. Our conclusions is that superconductivity is filamentary. However, in one studied sample, the fraction was about 10.2 %, whereas in others is only about 1% or less. We determined the superconducting characteristics; the critical fieldsthat indicate a type 2 superonductor with Ginzburg-Landau κ parameter of the order about 2.7. The synthesis procedure is quite normal following the conventional solid state reaction. In this paper, included are the electronic characteristics, transition temperature, and evolution with temperature of the critical fields.  相似文献   
1000.
The electromigration process has the potential capability to move atoms one by one when properly controlled. It is therefore an appealing tool to tune the cross section of monoatomic compounds with ultimate resolution or, in the case of polyatomic compounds, to change the stoichiometry with the same atomic precision. As demonstrated here, a combination of electromigration and anti‐electromigration can be used to reversibly displace atoms with a high degree of control. This enables a fine adjustment of the superconducting properties of Al weak links, whereas in Nb the diffusion of atoms leads to a more irreversible process. In a superconductor with a complex unit cell (La2?x Cex CuO4), the electromigration process acts selectively on the oxygen atoms with no apparent modification of the structure. This allows to adjust the doping of this compound and switch from a superconducting to an insulating state in a nearly reversible fashion. In addition, the conditions needed to replace feedback controlled electromigration by a simpler technique of electropulsing are discussed. These findings have a direct practical application as a method to explore the dependence of the characteristic parameters on the exact oxygen content and pave the way for a reversible control of local properties of nanowires.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号