首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3866篇
  免费   417篇
  国内免费   51篇
电工技术   40篇
综合类   49篇
化学工业   1139篇
金属工艺   163篇
机械仪表   265篇
建筑科学   104篇
矿业工程   29篇
能源动力   214篇
轻工业   299篇
水利工程   25篇
石油天然气   31篇
无线电   630篇
一般工业技术   803篇
冶金工业   136篇
原子能技术   66篇
自动化技术   341篇
  2023年   48篇
  2022年   85篇
  2021年   130篇
  2020年   100篇
  2019年   122篇
  2018年   152篇
  2017年   153篇
  2016年   160篇
  2015年   172篇
  2014年   212篇
  2013年   243篇
  2012年   289篇
  2011年   304篇
  2010年   254篇
  2009年   257篇
  2008年   216篇
  2007年   135篇
  2006年   143篇
  2005年   130篇
  2004年   128篇
  2003年   121篇
  2002年   151篇
  2001年   99篇
  2000年   83篇
  1999年   56篇
  1998年   56篇
  1997年   50篇
  1996年   32篇
  1995年   23篇
  1994年   24篇
  1993年   12篇
  1992年   8篇
  1991年   17篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   18篇
  1986年   8篇
  1985年   11篇
  1984年   10篇
  1983年   17篇
  1982年   6篇
  1981年   4篇
  1978年   8篇
  1977年   4篇
  1976年   10篇
  1975年   10篇
  1974年   4篇
  1973年   11篇
  1971年   7篇
排序方式: 共有4334条查询结果,搜索用时 15 毫秒
21.
High efficiency red phosphorescent organic light-emitting diodes have been developed using a spirobenzofluorene type phosphine oxide (SPPO2) as a host material. The SPPO2 had a high glass transition temperature of 119 °C and a smooth surface morphology with a surface roughness less than 1 nm. The red device with the SPPO2 as a host showed a quantum efficiency of 14.3% with a current efficiency of 20.4 cd/A.  相似文献   
22.
In this paper, we study the problem of scheduling sensor activity to cover a set of targets with known locations such that all targets can be monitored all the time and the network can operate as long as possible. A solution to this scheduling problem is to partition all sensors into some sensor covers such that each cover can monitor all targets and the covers are activated sequentially. In this paper, we propose to provide information coverage instead of the conventional sensing disk coverage for target. The notion of information coverage is based on estimation theory to exploit the collaborative nature of geographically distributed sensors. Due to the use of information coverage, a target that is not within the sensing disk of any single sensor can still be considered to be monitored (information covered) by the cooperation of more than one sensor. This change of the problem settings complicates the solutions compared to that by using a disk coverage model. We first define the target information coverage (TIC) problem and prove its NP‐completeness. We then propose a heuristic to approximately solve our problem. Simulation results show that our heuristic is better than an existing algorithm and is close to the upper bound when only the sensing disk coverage model is used. Furthermore, simulation results also show that the network lifetime can be significantly improved by using the notion of information coverage compared with that by using the conventional definition of sensing disk coverage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
23.
Reversible metal-filamentary mechanism has been widely investigated to design an analog resistive switching memory (RSM) for neuromorphic hardware-implementation. However, uncontrollable filament-formation, inducing its reliability issues, has been a fundamental challenge. Here, an analog RSM with 3D ion transport channels that can provide unprecedentedly high reliability and robustness is demonstrated. This architecture is realized by a laser-assisted photo-thermochemical process, compatible with the back-end-of-line process and even applicable to a flexible format. These superior characteristics also lead to the proposal of a practical adaptive learning rule for hardware neural networks that can significantly simplify the voltage pulse application methodology even with high computing accuracy. A neural network, which can perform the biological tissue classification task using the ultrasound signals, is designed, and the simulation results confirm that this practical adaptive learning rule is efficient enough to classify these weak and complicated signals with high accuracy (97%). Furthermore, the proposed RSM can work as a diffusive-memristor at the opposite voltage polarity, exhibiting extremely stable threshold switching characteristics. In this mode, several crucial operations in biological nervous systems, such as Ca2+ dynamics and nonlinear integrate-and-fire functions of neurons, are successfully emulated. This reconfigurability is also exceedingly beneficial for decreasing the complexity of systems—requiring both drift- and diffusive-memristors.  相似文献   
24.
声光器件在设计和制作中,由于器件结构和功能上的需要,常采用级联形式的声光互作用。根据声光互作用的一般理论,对不同的声光互作用条件下,级联布喇格声光互作用的频移和光束偏转进行了分析。当组合两次不同的声光互作用,可以得到不同的频移和光束偏转。并指出,通过调节两声波的频率,可以使输出光波的传播方向不随声波频率的改变而变化。  相似文献   
25.
An efficient way to implement the surface impedance boundary conditions (SIBC) for the finite-difference time-domain (FDTD) method is presented in this paper. Surface impedance boundary conditions are first formulated for a lossy dielectric half-space in the frequency domain. The impedance function of a lossy medium is approximated with a series of first-order rational functions. Then, the resulting time-domain convolution integrals are computed using recursive formulas which are obtained by assuming that the fields are piecewise linear in time. Thus, the recursive formulas derived here are second-order accurate. Unlike a previously published method [7] which requires preprocessing to compute the exponential approximation prior to the FDTD simulation, the preprocessing time is eliminated by performing a rational approximation on the normalized frequency-domain impedance. This approximation is independent of material properties, and the results are tabulated for reference. The implementation of the SIBC for a PEC-backed lossy dielectric shell is also introduced  相似文献   
26.
This letter presents a smart integrated microfluidic device which can be applied to actively immobilize proteins on demand. The active component in the device is a temperature‐controllable microelectrode array with a smart polymer film, poly(N‐isopropylacrylamide) (PNIPAAm) which can be thermally switched between hydrophilic and hydrophobic states. It is integrated into a micro hot diaphragm having an integrated micro heater and temperature sensors on a 2‐micrometer‐thick silicon oxide/silicon nitride/silicon oxide (O/N/O) template. Only 36 mW is required to heat the large template area of 2 mm×16 mm to 40°C within 1 second. To relay the stimulus‐response activity to the microelectrode surface, the interface is modified with a smart polymer. For a model biomolecular affinity test, an anti‐6‐(2, 4‐dinitrophenyl) aminohexanoic acid (DNP) antibody protein immobilization on the microelectrodes is demonstrated by fluorescence patterns.  相似文献   
27.
Mussel‐inspired chemistry has attracted widespread interest in membrane science and technology. Demonstrating the rapid growth of this field over the past several years, substantial progress has been achieved in both mussel‐inspired chemistry and membrane surface engineering based on mussel‐inspired coatings. At this stage, it is valuable to summarize the most recent and distinctive developments, as well as to frame the challenges and opportunities remaining in this field. In this review, recent advances in rapid and controllable deposition of mussel‐inspired coatings, dopamine‐assisted codeposition technology, and photoinitiated grafting directly on mussel‐inspired coatings are presented. Some of these technologies have not yet been employed directly in membrane science. Beyond discussing advances in conventional membrane processes, emerging applications of mussel‐inspired coatings in membranes are discussed, including as a skin layer in nanofiltration, interlayer in metal‐organic framework based membranes, hydrophilic layer in Janus membranes, and protective layer in catalytic membranes. Finally, some critical unsolved challenges are raised in this field and some potential pathways are proposed to address them.  相似文献   
28.
This study reports a new nonfullerene electron transporting material (ETM) based on naphthalene diimide (NDI) small molecules for use in high‐performance perovskite solar cells (PSCs). These solar cells simultaneously achieve high power conversion efficiency (PCE) of over 20% and long‐term stability. New NDI‐ID (N,N′‐Bis(1‐indanyl)naphthalene‐1,4,5,8‐tetracarboxylic diimide) consisting of an N‐substituted indane group having simultaneous alicyclic and aromatic characteristics is synthesized by a low‐cost, one‐step reaction, and facile purification method. The partially flexible characteristics of an alicyclic cyclopentene group on indane groups open the possibility of low‐temperature solution processing. The conformational rigidity and aromaticity of phenyl and alicyclic groups contribute to high temporal stability by strong secondary bonds. NDI‐ID has herringbone packed semiconducting NDI cores that exhibit up to 0.2 cm2 V?1 s?1 electron mobility in field effect transistors. The inverted PSCs based on CH(NH2)2PbI3–xBrx with NDI‐ID ETM exhibit very high PCEs of up to 20.2%, which is better than that of widely used PCBM (phenyl‐C61‐butyric acid methyl ester) ETM‐based PSCs. Moreover, NDI‐ID‐based PSCs exhibit very high long‐term temporal stability, retaining 90% of the initial PCE after 500 h at 100 °C with 1 sun illumination without encapsulation. Therefore, NDI‐ID is a promising ETM for highly efficient, stable PSCs.  相似文献   
29.
30.
Graphene has been gradually studied as a high‐frequency transmission line material owing to high carrier mobility with frequency independence up to a few THz. However, the graphene‐based transmission lines have poor conductivity due to their low carrier concentration. Here, it is observed that the radio frequency (RF) transmission performance could be severely hampered by the defect‐induced scattering, even though the carrier concentration is increased. As a possible solution, the deposition of the amorphous carbon on the graphene is studied in the high‐frequency region up to 110 GHz. The DC resistance is reduced by as much as 60%, and the RF transmission property is also enhanced by 3 dB. Also, the amorphous carbon covered graphene shows stable performance under a harsh environment. These results prove that the carrier concentration control is an effective and a facile method to improve the transmission performance of graphene. It opens up the possibilities of using graphene as interconnects in the ultrahigh‐frequency region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号