首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3061篇
  免费   106篇
  国内免费   23篇
电工技术   66篇
综合类   2篇
化学工业   662篇
金属工艺   104篇
机械仪表   80篇
建筑科学   43篇
矿业工程   4篇
能源动力   115篇
轻工业   145篇
水利工程   26篇
石油天然气   30篇
无线电   318篇
一般工业技术   671篇
冶金工业   498篇
原子能技术   38篇
自动化技术   388篇
  2024年   10篇
  2023年   44篇
  2022年   64篇
  2021年   89篇
  2020年   102篇
  2019年   73篇
  2018年   88篇
  2017年   106篇
  2016年   96篇
  2015年   72篇
  2014年   104篇
  2013年   242篇
  2012年   109篇
  2011年   159篇
  2010年   134篇
  2009年   127篇
  2008年   135篇
  2007年   131篇
  2006年   100篇
  2005年   69篇
  2004年   65篇
  2003年   56篇
  2002年   58篇
  2001年   44篇
  2000年   48篇
  1999年   44篇
  1998年   110篇
  1997年   83篇
  1996年   54篇
  1995年   60篇
  1994年   68篇
  1993年   30篇
  1992年   27篇
  1991年   26篇
  1990年   32篇
  1989年   23篇
  1988年   28篇
  1987年   20篇
  1986年   22篇
  1985年   27篇
  1984年   19篇
  1983年   18篇
  1982年   14篇
  1981年   12篇
  1980年   17篇
  1979年   15篇
  1978年   15篇
  1977年   18篇
  1976年   29篇
  1975年   13篇
排序方式: 共有3190条查询结果,搜索用时 15 毫秒
81.
Linear low‐density polyethylene (LLDPE) was blended with decanol‐esterified styrene maleic anhydride copolymer (MDESMA) with an aim to enhance the environmental degradability of polyethylenes. Styrene‐maleic anhydride copolymer (SMA) was synthesized by precipitation polymerization, using benzoyl peroxide (BPO) as initiator. SMA was esterified with a long‐chain monoalcohol, n‐decanol, using methyl ethyl ketone (MEK) as solvent at 80°C to obtain monoesterified styrene‐maleic anhydride (MDESMA). Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA) were performed to characterize SMA and MDESMA. IR spectra of MDESMA showed a decrease in intensity of peak responsible for carbonyl absorption of a five‐membered ring anhydride group along with broadening of carboxyl O? H stretching peak. TGA showed two‐stage degradation for SMA and MDESMA. LLDPE was blended with MDESMA in single‐screw extruder and blends were characterized thermally by DSC and TGA. A single endothermic melting peak of LLDPE/MDESMA blend was observed. Films of the blends, formed by compression molding, showed an increase in modulus of elasticity but a decrease in elongation at break with increasing concentration of MDESMA. LLDPE/MDESMA blend compositions when kept in phosphate/citric acid buffer solution (pH ~ 8) showed initial weight gain because of water absorption and subsequently loss in weight due to dissolution of soluble component of blends. Film samples of blends kept for soil burial also showed similar behavior. Contact‐angle measurement of film samples of the blends showed an increase in value on soil burial, indicating degradation/dissolution of MDESMA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 102–108, 2004  相似文献   
82.
Severe accident studies for very low frequency events for VVER-1000 (V320) are carried out to estimate in-vessel damage progression under steam-rich and starved conditions. The analyses with code ASTEC, jointly developed by IRSN (France) and GRS, Germany), have shown the influence of steam environment on core heat-up followed by material relocation, hydrogen production, vessel failure and aerosol generation along with release to containment. Hydro-accumulator injection for studied transients also gives rise to a steam-rich environment enhancing the material oxidation depending on the injection time and period. The generated information along with PSA-Level 2 is helpful to decide Plant Damage State (PDS) and fruitfully develop accident management strategies for the plant.  相似文献   
83.
The advantages of lowering the operation temperature of SOFCs have attracted great interest worldwide. One of the major barriers to decreasing the operation temperature is the ohmic loss of the electrolyte. Maximizing the electrolyte ionic conductivity is of significant importance, especially in the absence of new electrolyte materials. The ionic conductivity of electrolytes can be influenced by many parameters. There has been an enormous effort in the literature for the improvement of the electrolyte ionic conductivity. From a practical point of view, this paper reviews various approaches to enhancing the ionic conductivity of polycrystalline zirconia- and ceria-based oxide electrolytes in the light of composition, microstructure, and processing. Suggestions are given for future work.  相似文献   
84.
Microbial fuel cells are capable of producing electricity through the treatment of wastewater, however, the low power density poses main hurdles towards their wide application. In present work, microbial fuel cell based on multiple anodes, acting as baffle is constructed for achieving higher performance which can be scaled up for real life application. It is investigated for continuous sixty two days using distillery wastewater (WW) in three batches under ambient condition. During first batch, the WW is maintained under stagnant condition inside the anode chamber where as in the rest of the two batches WW is recirculated in the chamber. A maximum power density 427 mW m−2, is achieved under stagnant condition which is further enhanced to 597 mW m−2 under recirculation mode. Recirculation of WW reduces the internal resistance arising from the mass transfer by 50%. Maximum COD removal and Coulombic efficiency obtained is 43% and 23%. Biofouling on the surface of the membrane facing anode chamber is observed.  相似文献   
85.
Destabilisation of as-cast chromium white iron with 16 wt-% chromium are performed by continuous destabilisation treatment for 4 h and short duration (0.66 h) cyclic destabilisation treatment at 900, 950, 1000, 1050, and 1100 °C. Continuous destabilisation causes secondary carbides precipitation from austenite which on slow cooling transforms to pearlite matrix. Cyclic destabilisation treatment causes similar precipitation of finer secondary carbides following shorter period austenitisation and a matrix containing martensite and retained austenite on forced-air cooling. After continuous destabilisation, hardness falls below the as-cast value (HV622); whereas it rises to HV950 after cyclic destabilisation treatment. The as-cast notched impact toughness (4.0 J) increases to 8.5 J or more after both continuous and cyclic destabilisation at 1050 and 1100 °C. Abrasive wear resistance after continuous destabilisation improves only at higher wear load (49.0 N), while after cyclic destabilisation it supersedes the as-cast and Ni-Hard IV performance at both low (19.6 N) and high (49.9 N) wear load.  相似文献   
86.
87.
This study focused on isolation and identification of possible phosphate‐solubilizing bacteria (PSB ) from the sewage‐fed East Kolkata Wetland (EKWL ), a prospective water resource for pisciculture. In addition, different limnological parameters have been correlated with orthophosphate and seasonal variations. PSB have been isolated in Pikovskaya medium and identified morphologically and biochemically and finally analysed by 16S rDNA gene sequence. Limnological studies involving temperature (potentiometric), pH (potentiometric), dissolved oxygen (iodometric), ammonia‐nitrogen (spectrophotometric) and orthophosphate (spectrophotometric) concentrations were conducted. The results of this study established the presence of Bacillus megaterium , a potential PSB in EKWL . The activity of B. megaterium is also supported by the seasonal orthophosphate variations. The changes in concentration of other limnological parameters were also prominent. The water quality parameters of temperature (r  = 0.886), dissolved oxygen (r  = 0.729) and ammonia‐nitrogen (r  = 0.396) concentrations exhibited a positive correlation with orthophosphate and a negative correlation with pH (r  = ?0.699). The B. megaterium obtained in this study, exhibited a significant alteration in regard to orthophosphate content and relationships with other factors. Further experiment on the soluble phosphorus solubilization potential of B. megaterium revealed the biological availability of phosphorus was increased by threefold after 120 hr of incubation, with the decreasing pH value, although the phytase activity was 0.419 U/ml. PSB have a vital function in plant nutrition in supplying phosphate, essential nutrients and its uptake results in appropriate functioning and metabolism of different aquatic plants and organisms. PSB are competent biofertilizer to amplify aquaculture production for sustainable development.  相似文献   
88.
Software and Systems Modeling - Models can be used to ease and manage the development, evolution, and runtime adaptation of a software system. When models are adapted, the resulting models must be...  相似文献   
89.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
90.
Fused filament fabrication (FFF) is a process where thermoplastic materials are heated to its melting point and then extruded, layer by layer, to create a three dimensional printed part. Printing occurs in a layered manner, which leads to creation of voids (air gaps) in the 3D printed parts. These voids act as centers for crack initiation, propagation and therefore resulting bulk mechanical properties are lower. This paper focuses on microstructural characterization and analysis of fused filament fabricated tensile test coupons made from acrylonitrile butadiene styrene polymer, at various design conditions. Comparable tensile modulus with injection molded specimens was obtained for FFF design condition that is, slice height (0.1778 mm), raster width (0.4064 mm), raster to raster air gap (−0.0015 mm), contour to raster air gap (−0.0508 mm) and raster angle (0°). Scanning electron microscope studies provided an understanding as to why FFF processed specimens yielded lower failure strain and an insight into the presence of intralayer voids in specimens having lower tensile modulus. The study confirmed that though bulk mechanicals were affected by the combined effect of inter, intra and interfacial voids, intravoids had a predominant influence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号