首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1840篇
  免费   163篇
  国内免费   4篇
电工技术   19篇
综合类   2篇
化学工业   540篇
金属工艺   16篇
机械仪表   44篇
建筑科学   68篇
矿业工程   2篇
能源动力   71篇
轻工业   289篇
水利工程   23篇
石油天然气   7篇
无线电   115篇
一般工业技术   251篇
冶金工业   175篇
原子能技术   10篇
自动化技术   375篇
  2024年   10篇
  2023年   29篇
  2022年   98篇
  2021年   117篇
  2020年   70篇
  2019年   81篇
  2018年   90篇
  2017年   89篇
  2016年   112篇
  2015年   68篇
  2014年   95篇
  2013年   145篇
  2012年   115篇
  2011年   163篇
  2010年   82篇
  2009年   87篇
  2008年   83篇
  2007年   75篇
  2006年   60篇
  2005年   42篇
  2004年   31篇
  2003年   24篇
  2002年   43篇
  2001年   14篇
  2000年   18篇
  1999年   24篇
  1998年   34篇
  1997年   19篇
  1996年   20篇
  1995年   8篇
  1994年   9篇
  1993年   13篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   5篇
  1976年   4篇
  1974年   1篇
排序方式: 共有2007条查询结果,搜索用时 15 毫秒
71.
Nanocrystalline Pt/CeO2 composite electrodes were fabricated to study the electrochemical oxidation of methanol and ethanol. The performance of the electrodes was tested as the ceria solutions aged over time. It was observed that the performance oscillated with time, suggesting that the catalytic behavior towards alcohol oxidation was greatly dependent on the aging of the particles. These results point to a great dependence of the catalytic effect on the redox state of the ceria particles.  相似文献   
72.
In vitro whole‐organism screens of Trypanosoma brucei with representative examples of brain‐penetrant microtubule (MT)‐stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub‐micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.  相似文献   
73.
Mechanical properties of poly(d,l )lactic acid films enriched with Vitamin E and Vitamin E Acetate (5–40% w/w) were investigated. The addition of both formulations resulted in increased polymer Young's modulus and tensile strength. Human foreskin fibroblasts and murine pre‐osteoblasts were used to assess the biocompatibility of polymers. Pre‐osteoblasts adhesion and proliferation were strongly decreased by Vitamin E, whereas Vitamin E Acetate did not alter cell proliferation. Collagen deposition was lower onto Vitamin E blended polymers than onto native and Vitamin E Acetate blended ones. Fibroblasts adhesion and proliferation were increased by both Vitamin E and Vitamin E Acetate addition. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39970.  相似文献   
74.
Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA‐blood–brain barrier (BBB) analysis of new tacrine–ferulic acid hybrids (TFAHs). We identified (E)‐3‐(hydroxy‐3‐methoxyphenyl)‐N‐{8[(7‐methoxy‐1,2,3,4‐tetrahydroacridin‐9‐yl)amino]octyl}‐N‐[2‐(naphthalen‐2‐ylamino)2‐oxoethyl]acrylamide (TFAH 10 n ) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50=68.2 nM ), strong antioxidant activity (4.29 equiv trolox in an oxygen radical absorbance capacity (ORAC) assay), and good β‐amyloid (Aβ) anti‐aggregation properties (65.6 % at 1:1 ratio); moreover, it is able to permeate central nervous system (CNS) tissues, as determined by PAMPA‐BBB assay. Notably, even when tested at very high concentrations, TFAH 10 n easily surpasses the other TFAHs in hepatotoxicity profiling (59.4 % cell viability at 1000 μM ), affording good neuroprotection against toxic insults such as Aβ1–40, Aβ1–42, H2O2, and oligomycin A/rotenone on SH‐SY5Y cells, at 1 μM . The results reported herein support the development of new multipotent TFAH derivatives as potential drugs for the treatment of Alzheimer′s disease.  相似文献   
75.
Here, we examine the structural, vibrational, optical, and morphological properties of ZnO particles synthesized by the hydrothermal method, incorporating cadmium at different concentrations through the molar ratio Rm = Cd+2/Zn+2 and a thermal treatment at 500°C. The X‐ray diffraction results demonstrated the high crystallinity of the ZnO compound with a wurtzite‐type hexagonal structure. The Raman scattering spectra demonstrated that the ZnO vibrational modes occur in the region between 200 and 1300 cm?1, which is associated with different vibrational configurations characteristic of the ZnO molecule: E2(Low), E2(M), A1(TO) E1(TO), 2B1(High), E2(High), and TA + LO. The modes that were most affected by the incorporation of Cd2+ were those assigned to 2E2(Low), E2(M), and 2B1(High), and this effect was associated with a greater displacement of Zn2+ ions. The optical study showed a reduction in the band gap and a decrease in the crystalline quality due to the substitution of Cd2+ in the ZnO lattice. Cadmium incorporation affected the morphology of the ZnO:Cd particles, changing the lengths and diameters of the ZnO rods; when the Cd concentration was increased, the ZnO rods shortened, forming coin‐type hexagonal structures.  相似文献   
76.
In this study, polypropylene (PP) composites reinforced with short glass fibers (GF) and exfoliated graphite nanoplatelets were obtained by melt compounding followed by injection molding. Morphological observations and quasi‐static tensile tests were carried out in order to investigate how the morphology and the mechanical properties of the composites were affected by the combined effect of two fillers of rather different size scales (i.e., micro‐ and nanoscale). The results indicate that the dispersion of the nanofiller in the PP matrix promoted the formation of a stronger interface between the matrix and GF, as indicated by the increase of the interfacial shear strength determined by the single‐fiber microdebonding test. Concurrently, a significant improvement of the tensile modulus and impact strength of the composites was observed, with small changes in the processability of hybrid composites compared to that of GF composites, as confirmed by rheological measurements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41682.  相似文献   
77.
Biocatalysis offers an alternative approach to conventional chemical processes for the production of single-isomer chiral drugs. Lipases are one of the most used enzymes in the synthesis of enantiomerically pure intermediates. The use of this type of enzyme is mainly due to the characteristics of their regio-, chemo- and enantioselectivity in the resolution process of racemates, without the use of cofactors. Moreover, this class of enzymes has generally excellent stability in the presence of organic solvents, facilitating the solubility of the organic substrate to be modified. Further improvements and new applications have been achieved in the syntheses of biologically active compounds catalyzed by lipases. This review critically reports and discusses examples from recent literature (2007 to mid-2015), concerning the synthesis of enantiomerically pure active pharmaceutical ingredients (APIs) and their intermediates in which the key step involves the action of a lipase.  相似文献   
78.
An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).  相似文献   
79.
Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox‐active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid–methylene blue (MB), N‐benzyl‐1,4‐dihydronicotinamide (BNAH)–MB, BNAH–lumiflavine, BNAH–riboflavin (RF), and NADPH–FAD–E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4‐aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4‐aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4‐aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme–FeIII results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme–FeIII complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme–FeIII. The quinoline or arylmethanol reenters the DV, and so transfers more heme–FeIII out of the DV. In this way, the 4‐aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme–FeIII and thence free FeIII concentrations in the cytosol. The iron species enter into redox cycles through reduction of FeIII to FeII largely mediated by reduced flavin cofactors and likely also by NAD(P)H–Fre. Generation of ROS through oxidation of FeII by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca2+ transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.  相似文献   
80.
Reconstituted collagen gels are widely used as scaffolds even though their low strength and poor elasticity limit their applications in VTE. Here, two approaches are adopted to modify their mechanical behavior: in the first, gels prepared under physiologic conditions are remodeled by cell‐mediated contraction; in the second, gels prepared in non‐physiologic conditions are chemically crosslinked. Samples are tested under cyclic loading and their viscoelastic behavior is assessed. The results show that both approaches result in lattices with adequate strength, and crosslinking significantly reduces hysteresis and permanent deformation. SEM shows that SMCs are capable of contracting and remodeling all the lattices, confirming that these are suitable supports for tissue regeneration.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号