首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   35篇
  国内免费   3篇
电工技术   5篇
化学工业   128篇
金属工艺   27篇
机械仪表   8篇
建筑科学   2篇
能源动力   18篇
轻工业   5篇
石油天然气   4篇
无线电   77篇
一般工业技术   247篇
冶金工业   17篇
原子能技术   4篇
自动化技术   61篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   16篇
  2019年   9篇
  2018年   11篇
  2017年   12篇
  2016年   14篇
  2015年   17篇
  2014年   31篇
  2013年   41篇
  2012年   38篇
  2011年   57篇
  2010年   40篇
  2009年   45篇
  2008年   44篇
  2007年   33篇
  2006年   26篇
  2005年   38篇
  2004年   25篇
  2003年   8篇
  2002年   15篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   2篇
  1968年   3篇
  1967年   6篇
  1966年   3篇
  1965年   4篇
排序方式: 共有603条查询结果,搜索用时 15 毫秒
31.
32.
33.
A direct numerical inversion method for the determination of the refractive index and the thickness of the outermost layer of a thin transparent film on top of a multilayer has been developed. This method is based on a second-order Taylor decomposition of the coefficients of the Abelès matrices of the newly grown layer. The variations of the real-time spectroscopic ellipsometry data are expressed as polynomial fuctions depending on the dielectric constant and the thickness of the newly grown layer. The method is fast, capable of single-wavelength and multiwavelength inversion of continuous as well as discontinuous-index profiles, and can be adapted to many different polarimetric instruments.  相似文献   
34.
Neurophysiological experiments show that the strength of synaptic connections can undergo substantial changes on a short time scale. These changes depend on the history of the presynaptic input. Using mean-field techniques, we study how short-time dynamics of synaptic connections influence the performance of attractor neural networks in terms of their memory capacity and capability to process external signals. For binary discrete-time as well as for firing rate continuous-time neural networks, the fixed points of the network dynamics are shown to be unaffected by synaptic dynamics. However, the stability of patterns changes considerably. Synaptic depression turns out to reduce the storage capacity. On the other hand, synaptic depression is shown to be advantageous for processing of pattern sequences. The analytical results on stability, size of the basins of attraction and on the switching between patterns are complemented by numerical simulations.  相似文献   
35.
The tetrapeptide Phe-Asn-Pro-Arg is a structurally optimized sequence for binding to the active site of thrombin. By conjugating this tetrapeptide or some variants to a C-terminal fragment of hirudin, we were able to generate a series of new bivalent inhibitors of thrombin containing only genetically encodable natural amino acids. We found that synergistic binding to both the active site and an exosite of thrombin can be enhanced through substitutions of amino acid residues at the P3 and P3' sites of the active-site directed sequence, Phe(P4)-Xaa(P3)-Pro(P2)-Arg(P1)-Pro(P1')-Gln(P2')-Yaa(P3'). Complementary to rational design, a phage library was constructed to explore further the residue requirements at the P4, P3 and P3' sites for bivalent and optimized two-site binding. Very significantly, panning of the phage library has led to thrombin-inhibitory peptides possessing strong anti-clotting activities in the low nanomolar range and yet interfering only partially the catalytic active site of thrombin. Modes of action of the newly discovered bivalent inhibitors are rationalized in light of the allosteric properties of thrombin, especially the interplay between the proteolytic action and regulatory binding occurring at thrombin surfaces remote from the catalytic active site.  相似文献   
36.
The current status of research on boron-carbon-nitrogen (B-C-N) and boron nitride (BN) nanotubes is presented. The latest achievements in syntheses, analyses and property measurements of these nanoscale tubular architectures are reviewed. The characteristic features of B-C-N and BN nanotubes, compared with conventional C nanotubes, are paid special attention. In particular, the latest breakthroughs in the chemical vapour deposition synthesis of BN nanotubes and an insight into their unique structures are highlighted. A wide range of potential applications is also envisaged, based on the recent progress, which includes pioneering results in BN nanocable fabrication, gas adsorption, electron transport and field emission measurements.  相似文献   
37.
The efficient processing of multidimensional similarity joins is important for a large class of applications. The dimensionality of the data for these applications ranges from low to high. Most existing methods have focused on the execution of high-dimensional joins over large amounts of disk-based data. The increasing sizes of main memory available on current computers, and the need for efficient processing of spatial joins suggest that spatial joins for a large class of problems can be processed in main memory. In this paper, we develop two new in-memory spatial join algorithms, the Grid-join and EGO*-join, and study their performance. Through evaluation, we explore the domain of applicability of each approach and provide recommendations for the choice of a join algorithm depending upon the dimensionality of the data as well as the expected selectivity of the join. We show that the two new proposed join techniques substantially outperform the state-of-the-art join algorithm, the EGO-join.  相似文献   
38.
Heterostructures of epitaxially grown biaxial ZnO/Ge, and coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge heterostructured nanowires with ideal epitaxial interfaces between the semiconductor ZnO sublayer and the Ge sublayer have been fabricated via a two‐stage chemical vapor–solid process. Structural characterization by high‐resolution transmission electron microscopy and electron diffraction indicates that both the ZnO and Ge sublayers in the heterostructures are single crystalline. A good epitaxial relationship of (100)ZnO∥(2 0)Ge exists at the interface between ZnO and Ge in the ZnO/Ge biaxial heterostructure. There is also an epitaxial relationship of (0 0)ZnO∥(020)Ge at the interface between the ZnO and Ge substructures in the coaxial ZnO/Ge/ZnO heterostructures, and a good epitaxial relationship of (0 0)ZnO∥(0 0)Ge at the interface between ZnO and Ge in the Ge/ZnO/Ge coaxial heterostructure. Structural models for the crystallographic relationship between the wurtzite‐ZnO and diamond‐like cubic‐Ge subcomponents in the heterostructures are given. The optical properties for the synthesized heterostructures are studied by spatially resolved cathodoluminescence spectra at low temperature (20 K). Excitingly, the unique biaxial and coaxial heterostructures display unique new luminescence properties. It is concluded that the ideal epitaxial interface between ZnO and Ge in the prepared heterostructures induces new optical properties. The group II–VI Ge‐based nanometer‐scale heterostructures and their interesting optical properties may inspire great interest in exploring related epitaxial heterostructures and their potential applications in lasers, gas sensors, solar energy conversion, and nanodevices in the future.  相似文献   
39.
Biological responses to photothermal effects of gold nanoparticles (GNPs) have been demonstrated and employed for various applications in diverse systems except for one important class – plants. Here, the uptake of GNPs through Arabidopsis thaliana roots and translocation to leaves are reported. Successful plasmonic nanobubble generation and acoustic signal detection in planta is demonstrated. Furthermore, Arabidopsis leaves harboring GNPs and exposed to continuous laser or noncoherent light show elevated temperatures across the leaf surface and induced expression of heat‐shock regulated genes. Overall, these results demonstrate that Arabidopsis can readily take up GNPs through the roots and translocate the particles to leaf tissues. Once within leaves, GNPs can act as photothermal agents for on‐demand remote activation of localized biological processes in plants.  相似文献   
40.
Immature human immunodeficiency virus type 1 (HIV‐1) is approximately spherical, but is constructed from a hexagonal lattice of the Gag protein. As a hexagonal lattice is necessarily flat, the local symmetry cannot be maintained throughout the structure. This geometrical frustration presumably results in bending stress. In natural particles, the stress is relieved by incorporation of packing defects, but the magnitude of this stress and its significance for the particles is not known. In order to control this stress, we have now assembled the Gag protein on a quasi‐spherical template derived from bacteriophage P22. This template is monodisperse in size and electron‐transparent, enabling the use of cryo‐electron microscopy in structural studies. These templated assemblies are far less polydisperse than any previously described virus‐like particles (and, while constructed according to the same lattice as natural particles, contain almost no packing defects). This system gives us the ability to study the relationship between packing defects, curvature and elastic energy, and thermodynamic stability. As Gag is bound to the P22 template by single‐stranded DNA, treatment of the particles with DNase enabled us to determine the intrinsic radius of curvature of a Gag lattice, unconstrained by DNA or a template. We found that this intrinsic radius is far larger than that of a virion or P22‐templated particle. We conclude that Gag is under elastic strain in a particle; this has important implications for the kinetics of shell growth, the stability of the shell, and the type of defects it will assume as it grows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号