首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102353篇
  免费   7699篇
  国内免费   2806篇
电工技术   4190篇
技术理论   4篇
综合类   3703篇
化学工业   18810篇
金属工艺   5346篇
机械仪表   6829篇
建筑科学   5307篇
矿业工程   1776篇
能源动力   3693篇
轻工业   7644篇
水利工程   1431篇
石油天然气   2917篇
武器工业   555篇
无线电   13599篇
一般工业技术   16701篇
冶金工业   6525篇
原子能技术   1422篇
自动化技术   12406篇
  2024年   311篇
  2023年   1502篇
  2022年   2529篇
  2021年   3768篇
  2020年   2823篇
  2019年   2668篇
  2018年   3110篇
  2017年   3194篇
  2016年   3405篇
  2015年   3541篇
  2014年   4895篇
  2013年   6283篇
  2012年   7047篇
  2011年   7792篇
  2010年   6267篇
  2009年   6208篇
  2008年   5939篇
  2007年   5157篇
  2006年   4841篇
  2005年   4095篇
  2004年   3335篇
  2003年   3118篇
  2002年   3015篇
  2001年   2600篇
  2000年   2172篇
  1999年   2069篇
  1998年   2337篇
  1997年   1616篇
  1996年   1394篇
  1995年   1070篇
  1994年   827篇
  1993年   721篇
  1992年   535篇
  1991年   444篇
  1990年   400篇
  1989年   333篇
  1988年   304篇
  1987年   216篇
  1986年   175篇
  1985年   145篇
  1984年   116篇
  1983年   80篇
  1982年   52篇
  1981年   47篇
  1980年   36篇
  1979年   42篇
  1978年   32篇
  1977年   45篇
  1976年   63篇
  1975年   24篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The melting, nonisothermal crystallization behavior and morphology of blends of polypropylene (PP) with random ethylene–propylene copolymer (PP‐R) were studied by differential scanning calorimetry, polarized optical microscopy, scanning electron microscopy, and X‐ray diffraction. The results showed that PP and PP‐R were very miscible and cocrystallizable. Modified Avrami analysis was used to analyze the nonisothermal crystallization kinetics of the blends. The values of the Avrami exponent indicated that the crystallization nucleation of the blends was heterogeneous, the growth of the spherulites was tridimensional, and the crystallization mechanism of PP was not affected by PP‐R. The crystallization activation energy was estimated using the Kissinger method. An interesting result was obtained with the modified Avrami analysis and the Kissinger method, whose conclusions were in good agreement. The addition of a minor PP‐R phase favored an increase in the overall crystallization rate of PP. Maximum enhancing effect wass found to occur with a PP‐R content of 20 wt %. The relationship between the composition and the morphology of the blends is discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 670–678, 2006  相似文献   
992.
Dukjoon Kim  Kinam Park 《Polymer》2004,45(1):189-196
Swelling and mechanical properties were investigated for superporous hydrogels (SPHs) of poly(acrylamide-co-acrylic acid)/polyethylenimine (P(AM-co-AA)/PEI) interpenetrating polymer networks (IPNs). Gelation kinetics of SPHs changed significantly according to the acidic condition of reactant. The compressive strength of neutralized SPHs decreased monotonically with AA concentration, while the maximum swelling was observed around the AA weight fraction of 0.4 for all PEI concentrations. The SPH samples composed of high concentrations of AA and PEI were easily cracked in water due to the swelling stress developed during water uptake. The swelling kinetics decreased with increasing PEI and PAA concentrations because of the high molecular entanglement and network density associated with ionic interaction between PAA and PEI molecules. For non-neutralized SPHs, the equilibrium water uptake decreased but the compressive strength increased with PEI and PAA concentrations by simple plasticization effect.  相似文献   
993.
Continuous copolymerizations of ?‐caprolactone with ?‐caprolactam and ω‐lauryl lactam were carried out in a modular intermeshing corotating twin‐screw extruder. Sodium hydride (initiator) and N‐acetyl caprolactam (coinitiator) were used to synthesize lactam–lactone copolymers in a twin‐screw extruder. We consider the variables of feeding order and feed rate of comonomers on the reactive extrusion of lactam–lactone copolymers. It was observed that simultaneous feeding of both monomers with initiator and coinitiator in the first hopper produced a mixture of homopolymers. When we fed the lactam into the first hopper and caprolactone sequentially into the second hopper, we obtained the lactam–caprolactone block copolymers. However, when we fed caprolactone first into the first hopper and the lactam into the second hopper, the extruded product was a mixture of poly(?‐caprolactone) and lactam monomer. We synthesized high molecular weight copolymers of poly(caprolactam‐b‐caprolactone) and poly(lauryl lactam‐b‐caprolactone) with different block lengths by sequential feeding of monomers. The block length of the block copolymer could be adjusted by controlling the feed rate of each monomer during reactive extrusion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1429–1437, 2003  相似文献   
994.
Chemostat and total cell retention cultures with internal filter system ofSaecharomyc.es cerevisiae H1-7 were carried out to produce ethanol from wood hydrolysate. Maximum ethanol productivity obtained in a chemostat with the aeration rate of 1 vvm was 3.79 g/(L·h). This was 20% higher than that in a chemostat without aeration. However, the substrate was not completely consumed at the dilution rate with the maximum productivity. The realistic productivity, which has higher than 99% conversion rate of substrate, was. 2.95 g/(L·h). The maximum productivity in the total cell retention culture was 6.65 g/(L·h) at the dilution rate of 0.19 h1 and the residual glucose concentration was negligible.  相似文献   
995.
The cure kinetics of blends of epoxy resin (4,4’-tetraglycidyl diaminodiphenyl methane; TGDDM)/curing agent (diaminodiphenyl sulfone; DDS) with ATPEI (amine terminated poly-etherimide) -CTBN (carboxyl terminated poly (butadiene-co-acrylonitrile)) block copolymer (AB type) were studied using differential scanning calorimetry under isothermal conditions to determine the reaction kinetic parameters such as activation energy and reaction constants. Final cure conversion decreased with increasing amount of AB in the blends. A diffusion controlled reaction was observed as the cure conversion increased, and the curing reaction was successfully analyzed by incorporating the diffusion control term in the rate equation for the epoxy/DDS/AB blends. The fracture toughness was improved to about 350% compared to that of the unmodified resin at 30% of AB block copolymer. This is attributed to the formation of co-continuous morphology between the epoxy phase and AB block copolymer phase. By increasing the amount of AB, the modulus of the cured blends decreased, which was due to the presence of CTBN rubbery phases.  相似文献   
996.
提出了一种新型多素数嵌入式存储系统,能够显著改善系统跨步访问的性能。提高跨步访存的带宽,对于改善系统的整体性能有着重要的意义。但是,在嵌入式系统中,受片外结构的尺寸限制,直接应用经典的素数存储系统理论无法显著改善跨步访存性能。为此,该新型系统以素数存储系统理论为基础,引入主存访问调度策略并结合嵌入式系统的实际结构特征,构造了一种两层结构的多素数存储系统,可以用较少数量的存储模块实现,而且从逻辑地址到物理地址的映像计算简单,能够以相对较小的硬件代价实现对嵌入式存储系统跨步访问的有效支持。理论分析和实验结果均证实了该系统的正确性和有效性。  相似文献   
997.
本文考察了凝胶色谱法的操作压力和进料流速的影响。对国内具有代表性的几种平板超滤膜(聚砜、聚砜酰胺、醋酸纤维素、聚丙烯腈、聚氯乙烯)以及聚砜中空纤维超滤膜的截留率——分子量曲线进行了测定。并给出它们的切割分子量数据。  相似文献   
998.
Wool fabrics undergo setting during dyeing. The degree of set can be controlled by careful selection of dyebath conditions and also by the addition to the dyebath of chemicals termed anti-setting agents. The anti-setting effect of sodium thiocyanate has been evaluated according to its concentration in the dyebath and the dyebath pH. The fabric crease-angle method was adopted to estimate the degree of anti-setting. In the case of wool fabric boiled in the presence of sodium thiocyanate, good anti-setting effects resulted from the pH 3 and pH 5 treatment baths. Chemical changes in the wool were detected using FTIR analysis.  相似文献   
999.
The main purpose of the study was to develop a model using ASPEN and Excel simulation method to establish optimum CO2 separation process utilizing hollow fiber membrane modules to treat exhaust gas from LNG combustion. During the simulation, optimum conditions of each CO2 separation scenario were determined while operating parameters of CO2 separation process were varied. The characteristics of hollow fibers membrane were assigned as 60 GPU of permeability and 25 of selectivity for the simulation. The simulation results illustrated that 4 stage connection of membrane module is required in order to achieve over 99% of CO2 purity and 90% of recovery rate. The resulted optimum design and operation parameters throughout the simulation were also correlated with the experimental data from the actual CO2 separation facility which has a capacity of 1,000 Nm3/day located in the Korea Research Institute of Chemical Technology. Throughout the simulation, the operating parameters of minimum energy consumption were evaluated. Economic analysis of pilot scale of CO2 separation plant was done with the comparison of energy cost of CO2 recovery and equipment cost of the plant based on the simulation model. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   
1000.
Styrene‐acrylonitrile copolymer (SAN)/clay nanocomposites were synthesized through an emulsion copolymerization of styrene and acrylonitrile in the presence of sodium montmorillonite, and their physical properties and electroresponsiveness under an applied electric field were characterized. Thermogravimetric analysis (TGA) showed that the thermal stability of the synthesized polymer was sustained. X‐ray diffraction (XRD) analysis confirmed the insertion of SAN into the interlayers of clay, whose separation consequently increased, as compared to those of the pristine clay. Transmission electron microscopy (TEM) was used to observe the suspended state of clay. Dry‐base electrorheological (ER) fluids were prepared by mixing intercalated SAN nanocomposite particles into silicone oil. Typical ER behavior, i.e., enhancement of shear and yield stresses in the presence of an applied electric field, was observed using a rotational rheometer equipped with a high‐voltage generator. A universal yield stress scaling equation was also found to fit our experimental data well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 821–827, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号