首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
电工技术   1篇
化学工业   2篇
轻工业   2篇
无线电   28篇
一般工业技术   5篇
冶金工业   3篇
自动化技术   15篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   9篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1976年   2篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
51.
High-altitude platforms are one of the most promising alternative infrastructures for realizing next generation high data rate wireless networks. This paper presents a three-dimensional (3-D) scattering model for land mobile stratospheric multipath-fading channel with its complex faded envelope. From the scattering model and the complex envelope second-order statistics are derived for a 3-D non-isotropic scattering environment. When we discuss on the second-order statistics we refer to the level crossing rate and the average fade duration, whichare two main parameters in describing the fading severity over time and are very important in assess system characteristics such as hand off, velocities of the transmitter and receiver and fading rate. Numerical calculations have been carried out to demonstrate theoretical derivations and the utility of the proposed model.  相似文献   
52.
An energy‐aware virtual topology rating system is proposed in this work, which can be utilized as a tool during the virtual topology reconfiguration procedure in an optical backbone network in order to reduce its energy consumption. It is well known that maintaining a static virtual topology in Internet Protocol (IP)‐over‐Wavelength Division Multiplexing (WDM) networks is not energy‐efficient. To that end, virtual topology adaptation algorithms have been developed to adjust the virtual topology to the constantly fluctuating traffic load. While these algorithms achieve significant energy savings, further reduction on the total network energy consumption can be achieved through the proposed rating system. The proposed rating system is a modified version of the page rank algorithm, which ranks websites in the Internet based on their importance. The proposed rating system attributes ratings to lightpaths, which indicate the relative significance of a lightpath in the virtual topology in terms of energy consumption. The rating can be used during the routing procedure as an energy efficiency indicator, in order to increase the number of lightpaths that are deactivated from the reconfiguration mechanism and increase the utilization per lightpath. The proposed reconfiguration scheme (page rank‐based virtual topology reconfiguration) achieves up to 12% additional energy savings in comparison to an existing virtual topology reconfiguration algorithm at the cost of slightly increased average hop distance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
53.
54.
We propose a communication protocol, called the virtual circuit deflection (VCD) protocol, which combines some of the individual characteristics of virtual circuit switching and deflection routing. An advantage of the VCD protocol over previous (datagram) deflection schemes is that deflections in the former occur on a per session basis (or a per subsession basis, if sessions need to be split to find adequate capacity on the outgoing links), while in the latter, they occur on a per packet basis. This makes packet resequencing at the destination considerably easier to accomplish in the VCD protocol than in datagram deflection schemes. The VCD protocol exploits the storage arising from the high bandwidth-delay product of optical fibers to provide lossless communication with little buffering at the switches and without the need for advance reservations. This makes it particularly suitable for networks that use optical switching, where buffers are expensive to implement with current optical technology. We present a simple implementation of the VCD protocol for such networks, which requires only limited buffering, accomplished through the use of a minimal number of optical delay lines. We also analyze the performance of the protocol for the Manhattan Street network topology by using new analytical models. In particular, we examine the effect of the traffic load and the network size on the throughput and the length of the paths followed by the sessions, and compare the analytical results obtained with corresponding simulation results. The results indicate that the VCD protocol is efficient under both light and heavy traffic conditions, especially when the link capacities are large compared to the basic rate of individual sessions, as is expected to be the case in future multigigabit networks  相似文献   
55.
We demonstrate the use of impairment constraint routing for performance engineering of transparent metropolitan area optical networks. Our results show the relationship between blocking probability and different network characteristics such as span length, amplifier noise figure, and bit rate, and provide information on the system specifications required to achieve acceptable network performance.  相似文献   
56.
We propose and evaluate a new burst assembly algorithm based on the average delay of the packets comprising a burst. This method fixes the average delay of the packets belonging to an assembled burst to a desired value TAVE that may be different for each forwarding equivalence class (FEC). We show that the proposed method significantly improves the delay jitter experienced by the packets during the burst assembly process, when compared to that of timer-based and burst length-based assembly policies. Minimizing packet delay jitter is important in a number of applications, such as real-audio and streaming-video applications. We also find that the improvement in the packet delay jitter yields a corresponding significant improvement in the performance of TCP, whose operation depends critically on the ability to obtain accurate estimates of the round-trip times (RTT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号