首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   34篇
  国内免费   3篇
电工技术   3篇
综合类   2篇
化学工业   117篇
金属工艺   18篇
机械仪表   22篇
建筑科学   23篇
能源动力   48篇
轻工业   51篇
水利工程   4篇
石油天然气   1篇
无线电   61篇
一般工业技术   107篇
冶金工业   47篇
原子能技术   7篇
自动化技术   96篇
  2024年   4篇
  2023年   7篇
  2022年   19篇
  2021年   32篇
  2020年   32篇
  2019年   28篇
  2018年   40篇
  2017年   28篇
  2016年   38篇
  2015年   13篇
  2014年   38篇
  2013年   68篇
  2012年   27篇
  2011年   50篇
  2010年   27篇
  2009年   28篇
  2008年   24篇
  2007年   12篇
  2006年   12篇
  2005年   13篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
1.
As the surface properties of the drying materials are very important not only for the drying rate but also for the quality change during drying, the effects of surface concentration on the drying behavior of liquid foods (sugar solutions) were investigated by isothermal drying experiments and by numerical calculation experiments. The isothermal drying experiments with gelled sugar solution systems (sucrose and maltodextrin) were carried out at various relative humidity (RH) values (RH = 0 to 84%). Separate experiments were carried out for determination of the desorption isotherms.

The isothermal drying curves of sugar solutions at RH = 0 to 51% were very similar. Numerical simulations also showed that the drying curves of these sugars at the surface concentration = 0 and 0.1 are almost the same, although the concentration distributions are different.

When a small amount of gelatin was added to sugar solutions, the drying rate decreased remarkably as the gelatin might form a thin film (skin) near the surface, and consequently the retention of ethanol increased.  相似文献   
2.
Estimation of mixture coefficients of protein conformations in solution find applications in understanding protein behavior. We describe a method for maximum a posteriori (MAP) estimation of the mixture coefficients of ensemble of conformations in a protein mixture solution using measured small angle X-ray scattering (SAXS) intensities. The proposed method builds upon a model for the measurements of crystallographically determined conformations. Assuming that a priori information on the protein mixture is available, and that priori information follows a Dirichlet distribution, we develop a method to estimate the relative abundances with MAP estimator. The Dirichlet distribution depends on concentration parameters which may not be known in practice and thus need to be estimated. To estimate these unknown concentration parameters we developed an expectation-maximization (EM) method. Adenylate kinase (ADK) protein was selected as the test bed due to its known conformations Beckstein et al. (Journal of Molecular Biology, 394(1), 160 1). Known conformations are assumed to form the full vector bases that span the measurement space. In Monte Carlo simulations, mixture coefficient estimation performances of MAP and maximum likelihood (ML) (which assumes a uniform prior on the mixture coefficients) estimators are compared. MAP estimators using known and unknown concentration parameters are also compared in terms of estimation performances. The results show that prior knowledge improves estimation accuracy, but performance is sensitive to perturbations in the Dirichlet distribution’s concentration parameters. Moreover, the estimation method based on EM algorithm shows comparable results to approximately known prior parameters.  相似文献   
3.
In this correspondence, we propose an algorithm for computing the distance spectrum of a space-time trellis code achieving maximal diversity gain in quasi-static fading channels. We further present a state reduction technique for trellis codes that can reduce the complexity of the distance spectrum computation. We provide numerical results supporting the empirical evidence that a truncated union bound obtained from the distance spectrum provides an accurate characterization of the relative performance ordering of different space-time trellis codes and, therefore, it offers a tool for better space-time trellis code design.  相似文献   
4.
Multi-radio diversity in wireless networks   总被引:1,自引:0,他引:1  
This paper describes the Multi-Radio Diversity (MRD) wireless system, which uses path diversity to improve loss resilience in wireless local area networks (WLANs). MRD coordinates wireless receptions among multiple radios to improve loss resilience in the face of path-dependent frame corruption over the radio. MRD incorporates two techniques to recover from bit errors and lower the loss rates observed by higher layers, without consuming much extra bandwidth. The first technique is frame combining, in which multiple, possibly erroneous, copies of a given frame are combined together in an attempt to recover the frame without retransmission. The second technique is a low-overhead retransmission scheme called request-for-acknowledgment (RFA), which operates above the link layer and below the network layer to attempt to recover from frame combining failures. We present an analysis that determines how the parameters for these algorithms should be chosen. We have designed and implemented MRD as a fully functional WLAN infrastructure based on 802.11a. We evaluate the MRD system under several different physical configurations, using both UDP and TCP, and measured throughput gains up to 3× over single radio communication schemes employing 802.11’s autorate adaptation scheme. Computer and Communication Sciences, EPFL, Switzerland. Allen Miu received his Ph.D. degree at the Massachusetts Institute of Technology in 2006 and is currently a wireless systems architect at Ruckus Wireless, Inc. He received his S.M. in Computer Science from MIT and a B.Sc. with highest honors in Electrical Engineering and Computer Science from the University of California at Berkeley. He previously worked on the Cricket Indoor Location System and was a research intern at Microsoft Research, Redmond in 2000 and Hewlett-Packard Laboratories, Palo Alto in 2002. His research interests include wireless networks, location systems, mobile computing, and embedded systems. Hari Balakrishnan is an Associate Professor in the EECS Department and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. His research interests is in the area of networked computer systems. In addition to many widely cited papers, several systems developed as part of his research are available in the public domain. He received a Ph.D. in Computer Science from the University of California at Berkeley in 1998 and a B.Tech. from the Indian Institute of Technology (Madras) in 1993. His honors include an Alfred P. Sloan Research Fellowship (2002), an NSF CAREER Award (2000), the ACM doctoral dissertation award for his work on reliable data transport over wireless networks (1998), and seven award-winning papers at various top conferences and journals, including the IEEE Communication Society’s William R. Bennett Prize (2004). He has also received awards for excellence in teaching and research at MIT (Spira, Junior Bose, and Harold Edgerton faculty achievement awards). C. Emre Koksal received his B.S. degree in Electrical Engineering from the Middle East Technical University, Ankara in 1996. He received his S.M. and Ph.D. degrees from MIT in Electrical Engineering and Computer Science in 1998 and 2002 respectively. He was a postdoctoral fellow in the Networks and Mobile Systems Group in the Computer Science and Artificial Intelligence Laboratory at MIT until 2003. Since then he has been a senior researcher jointly in the Laboratory for Computer Communications and the Laboratory for Information Theory at EPFL, Switzerland. His general areas of interest are wireless communications, computer networks, information theory, stochastic processes and financial economics. He also has a certificate on Financial Technology from the Sloan School of Management at MIT.  相似文献   
5.
Noncoherent space-time coding: An algebraic perspective   总被引:1,自引:0,他引:1  
The design of space-time signals for noncoherent block-fading channels where the channel state information is not known a priori at the transmitter and the receiver is considered. In particular, a new algebraic formulation for the diversity advantage design criterion is developed. The new criterion encompasses, as a special case, the well-known diversity advantage for unitary space-time signals and, more importantly, applies to arbitrary signaling schemes and arbitrary channel distributions. This criterion is used to establish the optimal diversity-versus-rate tradeoff for training based schemes in block-fading channels. Our results are then specialized to the class of affine space-time signals which allows for a low complexity decoder. Within this class, space-time constellations based on the threaded algebraic space-time (TAST) architecture are considered. These constellations achieve the optimal diversity-versus-rate tradeoff over noncoherent block-fading channels and outperform previously proposed codes in the considered scenarios as demonstrated by the numerical results. Using the analytical and numerical results developed in this paper, nonunitary space-time codes are argued to offer certain advantages in block-fading channels where the appropriate use of coherent space-time codes is shown to offer a very efficient solution to the noncoherent space-time communication paradigm.  相似文献   
6.
Direct-sequence code-division multiple access is emerging as a potential multiple-access communication scheme for future digital wireless communications systems. Such wide-band systems usually operate in a frequency-selective fading channel that introduces intersymbol interference and thus potential performance degradation. Previously proposed subspace-based blind channel identification algorithms, which provide estimates of channel parameters for effective equalization, suffer from high numerical complexity for systems with large spreading gains. In this paper, it is shown that, through the use of matched filter outputs, reduction in numerical complexity can be obtained. The complexity reduction is considerable when the channel length is small and the system is moderately loaded. The results show that the new algorithm suffers a slight performance loss. Although the employed matched filter outputs do not form a set of sufficient statistics for the unknown channels, the difference between the matched filter outputs and the sufficient statistics becomes negligible for large observation lengths and the asymptotic normalized Fisher information does not change. Performance is evaluated through simulations, the derivation of a tight approximation of the mean-squared channel estimation error, and through comparisons to the Cramer-Rao bound for the estimation error variance. It is shown that the approximation of the mean-squared error can be obtained in terms of the correlation of the spreading codes and the channels. This representation of the error supplies a tool for investigating the relationship between performance and spreading sequence correlations  相似文献   
7.
Ozfatura  M. Emre  ElAzzouni  Sherif  Ercetin  Ozgur  ElBatt  Tamer 《Wireless Networks》2019,25(4):1931-1947
Wireless Networks - In this paper, we study a full-duplex cooperative cognitive radio network with multiple full-duplex secondary users acting as potential relays for transmitting the packets of a...  相似文献   
8.
Conventional solid-state power amplifier (SSPA) design approach isolates radio frequency (RF) design from communication theory. In this paper, a unified SSPA design approach is proposed, which optimizes SSPA parameters (bias voltage and input RF signal power) to minimize total DC power consumption while satisfying received SNR constraint specified by the link budget. The effect of SSPA nonlinearity is quantified by the error vector magnitude measured at its output and the corresponding received SNR degradation is analyzed. Using the quantitative metrics for received SNR, it is possible to evaluate highly nonlinear SSPA classes such as Class-B or deep-Class AB, which are normally not considered in conventional SSPA design approach to be used in satellite communication applications.  相似文献   
9.
Electrolyte additives have been widely used to address critical issues in current metal (ion) battery technologies. While their functions as solid electrolyte interface forming agents are reasonably well-understood, their interactions in the liquid electrolyte environment remain rather elusive. This lack of knowledge represents a significant bottleneck that hinders the development of improved electrolyte systems. Here, the key role of additives in promoting cation (e.g., Li+) desolvation is unraveled. In particular, nitrate anions (NO3) are found to incorporate into the solvation shells, change the local environment of cations (e.g., Li+) as well as their coordination in the electrolytes. The combination of these effects leads to effective Li+ desolvation and enhanced battery performance. Remarkably, the inexpensive NaNO3 can successfully substitute the widely used LiNO3 offering superior long-term stability of Li+ (de-)intercalation at the graphite anode and suppressed polysulfide shuttle effect at the sulfur cathode, while enhancing the performance of lithium–sulfur full batteries (initial capacity of 1153 mAh g−1 at 0.25C) with Coulombic efficiency of ≈100% over 300 cycles. This work provides important new insights into the unexplored effects of additives and paves the way to developing improved electrolytes for electrochemical energy storage applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号