首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   12篇
电工技术   1篇
化学工业   12篇
金属工艺   6篇
机械仪表   5篇
建筑科学   1篇
能源动力   4篇
轻工业   4篇
无线电   2篇
一般工业技术   3篇
冶金工业   3篇
自动化技术   3篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2015年   5篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
31.
32.
Here, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His6-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 µA·cm−2 for the nickel- and 17.3 µA·cm−2 for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.  相似文献   
33.
The solar energy becomes a challenging area among other renewable sources since the solar energy sources have the advantages of not causing pollution, having low maintenance cost, and not producing noise due to the absence of the moving parts. Although these advantages, the installation cost of a solar power plant is considerably high. However, feasibility analyses have a great role before installation in order to determine the most appropriate power plant site. Despite there are many methods used in feasibility analysis, this paper is focused on a new intelligent method based on an agglomerative hierarchical clustering approach. The solar irradiation and insolation parameters of Central Anatolian Region of Turkey are evaluated utilizing the intelligent feasibility analysis tool developed in this study. The clustering operation in the tool is performed by using the nearest neighbor algorithm. At the stage of determining the optimum hierarchical clustering results, Euclidean, Manhattan and Minkowski distance metrics are adapted to the tool. The achieved clustering results based on Minkowski distance metric provide the most feasible inferences to knowledge domain expert according to other distance metrics.  相似文献   
34.
The electronic coupling between a robust red algal photosystem I (PSI) associated with its light harvesting antenna (LHCI) and nanocrystalline n‐type semiconductors, TiO2 and hematite (α‐Fe2O3) is utilized for fabrication of the biohybrid dye‐sensitized solar cells (DSSC). PSI‐LHCI is immobilized as a structured multilayer over both semiconductors organized as highly ordered nanocrystalline arrays, as evidenced by FE‐SEM and XRD spectroscopy. Of all the biohybrid DSSCs examined, α‐Fe2O3/PSI‐LHCI biophotoanode operates at a highest quantum efficiency and generates the largest open circuit photo­current compared to the tandem system based on TiO2/PSI‐LHCI material. This is accomplished by immobilization of the PSI‐LHCI complex with its reducing side towards the hematite surface and nanostructuring of the PSI‐LHCI multilayer in which the subsequent layers of this complex are organized in the head‐to‐tail orientation. The biohybrid PSI‐LHCI‐DSSC is capable of sustained photoelectrochemical H2 production upon illumination with visible light above 590 nm. Although the solar conversion efficiency of the PSI‐LHCI/hematite DSSC is currently below a practical use, the system provides a blueprint for a genuinely green solar cell that can be used for molecular hydrogen production at a rate of 744 μmoles H2 mg Chl?1 h?1, placing it amongst the best performing biohybrid solar‐to‐fuel nanodevices.  相似文献   
35.
To evaluate the influence of passive ultrasonic irrigation (PUI) to remove the smear layer with different irrigation solutions. Seventy‐eight single rooted mandibular premolars were used. The working lengths were measured and the root canals were prepared by using nickel titanium rotary files. The specimens were subjected to six different irrigation regimens: sodium hypochloride (NaOCl) with classic irrigation (CI); NaOCl with PUI; EDTA with CI; EDTA with PUI; QMix with CI; and QMix with PUI. The specimens were split longitudinally. Scanning electron microscopy images were taken to evaluate the amount of residual smear layer and scored. Statistical analysis was performed with the Kruskal–Wallis test. The Dunn's test was used for post hoc testing after the Kruskal–Wallis test. The smear layer scores of apical thirds were significantly higher than coronal and middle thirds except for NaOCl + CI group (p < 0.001). The irrigation with PUI improved the efficacy of all irrigation solutions on removal of smear layer in both coronal and middle thirds (p < 0.001). The PUI activation increased the activity of NaOCl, EDTA, and QMix, respectively without any significance. All irrigation regimens were significantly more effective in coronal and middle thirds compared to apical third. PUI significantly increased the efficacy of smear layer removal regardless of irrigation solution.  相似文献   
36.
In-situ diffraction experiments were performed with high-energy synchrotron X-rays to measure strains in crystalline reinforcing particles (5 and 10 vol. pct W or 5 vol. pct Ta) of bulk metallic glass composites. As the composites were subjected to multiple uniaxial tensile load/unload cycles up to applied stresses of 1650 MPa, load transfer from the matrix to the stiffer particles was observed. At low applied loads, where the particles are elastic, agreement with Eshelby elastic predictions for stress partitioning between matrix and particles is found, indicating good bonding between the phases. At high applied loads, departure from the elastic stress partitioning is observed when the particles reach the von Mises yield criterion, as expected when plasticity occurs in the particles. Multiple mechanical excursions in the particle plastic region lead to strain hardening in the particles, as well as evolution in the residual strain state of the unloaded composite.  相似文献   
37.
38.
Steam was found to be a more effective sweep gas than nitrogen at low velocities in fixed-bed pyrolysis of Goynuk oil shale but, at higher velocities and in fluidized-bed pyrolysis, the differences were considerably less marked. Relatively small but significant synergistic effects were observed between lignites and the two oil shales investigated — Goynuk and Seyitomer — under static retorting conditions. These effects were more pronounced with large concentrations of oil shales but disappeared in fluidized-bed pyrolysis, where conversions are considerably higher because mass transfer limitations largely disappear.  相似文献   
39.
Investigation of the effect of rake angle on main cutting force   总被引:5,自引:0,他引:5  
This paper presents a study of comparison of empirical and experimental results for main cutting force during machining rotational parts by unworn cutting tools. A dynamometer was designed and produced for measuring the forces. Two strain gauges were placed at the correct position on the machine tool and cutting tool at the design stage. Correct gauge positioning sensed displacements of the tool caused by cutting forces. AISI 1040 was used as the workpiece material. Main cutting force (Fc) was measured for eight different rake angles changing from negative to positive values at five different cutting speeds. The depth of cut and feed rate were kept throughout the experiments. Empirical results according to Kienzle approach were compared with experimental results. Main cutting force was observed to have a decreasing trend as the rake angle increased from negative to positive values. The deviation between empirical approach and experiments was in the order of 10–15%.  相似文献   
40.
Fixed‐bed fast pyrolysis experiments have been conducted on a sample of cottonseed cake to determine the effects of pyrolysis temperature, heating rate and sweep gas flow rate on pyrolysis yields and chemical compositions of the product oil. The liquid products and the subfractions of pentane soluble part were characterized by elemental analysis, FT‐IR spectroscopy, 1H‐NMR spectroscopy and pentane subfraction was analysed by gas chromatography. The maximum oil yield of 34.8% was obtained at final temperature of 550°C with a heating rate of 700°C min?1 and nitrogen flow rate of 100 cm3 min?1. Chromatographic and spectroscopic studies on bio‐oil have shown that the oils obtained from cottonseed cake can be used as a renewable fuel and chemical feedstock. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号