首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   3篇
电工技术   2篇
化学工业   15篇
金属工艺   19篇
机械仪表   23篇
矿业工程   2篇
轻工业   4篇
水利工程   5篇
石油天然气   8篇
无线电   5篇
一般工业技术   24篇
冶金工业   70篇
原子能技术   4篇
自动化技术   15篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   11篇
  2017年   5篇
  2016年   8篇
  2015年   2篇
  2014年   8篇
  2013年   12篇
  2012年   12篇
  2011年   14篇
  2010年   4篇
  2009年   13篇
  2008年   8篇
  2007年   10篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   14篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1977年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1956年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
31.
Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.  相似文献   
32.
Metallurgical and Materials Transactions B - New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and...  相似文献   
33.
Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.  相似文献   
34.
The phase equilibria and the liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 have been determined experimentally in equilibrium with metallic iron. Specifically, the effects of Al2O3 concentrations in Imperial Smelting Furnace slags are identified, and the results are presented in the form of pseudo-ternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 5.0 and 3.5, respectively. It was found that, in the presence of Al2O3, the spinel phase is formed, the spinel primary phase field expands, and the wustite and melilite primary phase fields are reduced in size with an increasing Al2O3 concentration. The implications of the findings to industrial practice are discussed.  相似文献   
35.
The influence of the spatial orientation of an evaporator–condensing system (ECS) on the heat transfer coefficient is considered. As found, it varies according to the cosine law, which implies that it is at its minimum when the evaporator is in the top position, and it is at its maximum when the heater is in the bottom position. This is consistent with the physical considerations about the effect of buoyancy forces on heat transfer. The average velocity of coolant circulation through the ECS loop is found, and on this basis, the “electric” Reynolds number and heat transfer coefficient are estimated. The influence of pressure on heat transfer in the ECS has been analyzed. The considered phenomena have been physically interpreted; they agree well with the experimental data.  相似文献   
36.
Phase equilibria of the Cu-Fe-O-Si system have been investigated in equilibrium: (1) with air atmosphere at temperatures between 1373?K and 1673?K (1100?°C and 1400?°C) and (2) with metallic copper at temperatures between 1373?K and 1573?K (1100?°C and 1300?°C). High-temperature equilibration/quenching/electron-probe X-ray microanalysis (EPMA) techniques have been used to accurately determine the compositions of the phases in equilibrium in the system. The new experimental results are presented in the form of ??Cu2O??-??Fe2O3??-SiO2 ternary sections. The relationships between the activity of CuO0.5(l) and the composition of slag in equilibrium with metallic copper are discussed. The phase equilibria information of the Cu-Fe-O-Si system is of practical importance for industrial copper production processes and for the improvement of the existing thermodynamic database of copper-containing slag systems.  相似文献   
37.
A model has been developed that enables the viscosities of the fully liquid slag in the multi-component Al2O3-CaO-FeO-Fe2O3-MgO-Na2O-SiO2 system to be predicted within experimental uncertainties over a wide range of compositions and temperatures. The Eyring equation is used to express viscosity as a function of temperature and composition. The model links the activation and pre-exponential energy terms in the viscosity expression to the slag internal structure through the concentrations of various Si0.5O, $ {\text{Me}}^{n + }_{2/n} {\text{O}} $ , and $ {\text{Me}}^{n + }_{ 1/n} {\text{Si}}_{0. 2 5} {\text{O}} $ viscous flow structural units (SUs). The concentrations of these SUs are derived from a quasi-chemical thermodynamic model of the liquid slag using the thermodynamic computer package FactSage. The model describes a number of slag viscosity features including the charge compensation effect specific for the Al2O3-containing systems. The predictive capability of the model is enhanced by the physical aspects of the model parameters—the correlation with other physicochemical properties as well as experimental viscosity data is used to determine model parameters. The present series of two papers outlines (a) recent significant improvements introduced into the model formalism and (b) application of the model to the Al2O3-CaO-MgO-SiO2 system, review of experimental viscosity data, and optimization of the corresponding model parameters for this system.  相似文献   
38.
The phase equilibria and liquidus temperatures in the ZnO-“FeO”-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.  相似文献   
39.
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.  相似文献   
40.
The effect of tool orientation on the final surface geometry and quality in five-axis micro-milling of brass using ball-end mills is investigated. Straight grooves with a semicircular cross section are cut with different tool inclination and tilt angles, and the resulting surfaces are characterized using an optical profilometer and microscope. Micro-milling cutting forces are recorded synchronously with spindle electric current and cutting motions in order to investigate the correlation between the tool orientation and the achieved surface quality. Results of various cutting experiments and analysis of the final surface geometry show that varying the tool orientation reduces rubbing of the material at the bottom of the grooves, which often occurs in ball-end milling of brass, and improves the final surface quality. The experimental analysis for surface roughness shows that applying a tool inclination angle of 15° can considerably improve the surface roughness at the bottom of the grooves. Analysis of static and averaged peak-to-valley (P-to-V) values of the cutting forces show that the static cutting force values are reduced by half when the tool inclination was increased from 0 to 15°. P-to-V cutting force values in along-the-feed direction were also decreased in the inclined machining.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号