Radiotherapy is identified as a crucial treatment for patients with glioblastoma, but recurrence is inevitable. The efficacy of radiotherapy is severely hampered partially due to the tumor evolution. Growing evidence suggests that proneural glioma stem cells can acquire mesenchymal features coupled with increased radioresistance. Thus, a better understanding of mechanisms underlying tumor subclonal evolution may develop new strategies. Herein, data highlighting a positive correlation between the accumulation of macrophage in the glioblastoma microenvironment after irradiation and mesenchymal transdifferentiation in glioblastoma are presented. Mechanistically, elevated production of inflammatory cytokines released by macrophages promotes mesenchymal transition in an NF-κB-dependent manner. Hence, rationally designed macrophage membrane-coated porous mesoporous silica nanoparticles (MMNs) in which therapeutic anti-NF-κB peptides are loaded for enhancing radiotherapy of glioblastoma are constructed. The combination of MMNs and fractionated irradiation results in the blockage of tumor evolution and therapy resistance in glioblastoma-bearing mice. Intriguingly, the macrophage invasion across the blood-brain barrier is inhibited competitively by MMNs, suggesting that these nanoparticles can fundamentally halt the evolution of radioresistant clones. Taken together, the biomimetic MMNs represent a promising strategy that prevents mesenchymal transition and improves therapeutic response to irradiation as well as overall survival in patients with glioblastoma. 相似文献
The heavy reliance on data is one of the major reasons that currently limit the development of deep learning. Data quality directly dominates the effect of deep learning models, and the long-tailed distribution is one of the factors affecting data quality. The long-tailed phenomenon is prevalent due to the prevalence of power law in nature. In this case, the performance of deep learning models is often dominated by the head classes while the learning of the tail classes is severely underdeveloped. In order to learn adequately for all classes, many researchers have studied and preliminarily addressed the long-tailed problem. In this survey, we focus on the problems caused by long-tailed data distribution, sort out the representative long-tailed visual recognition datasets and summarize some mainstream long-tailed studies. Specifically, we summarize these studies into ten categories from the perspective of representation learning, and outline the highlights and limitations of each category. Besides, we have studied four quantitative metrics for evaluating the imbalance, and suggest using the Gini coefficient to evaluate the long-tailedness of a dataset. Based on the Gini coefficient, we quantitatively study 20 widely-used and large-scale visual datasets proposed in the last decade, and find that the long-tailed phenomenon is widespread and has not been fully studied. Finally, we provide several future directions for the development of long-tailed learning to provide more ideas for readers.
A theory recently developed by the present authors is applied to the study of the effect of elastic energy due to atomic size factor on the transformation behaviour of binary solid solutions. lt is found that elastic interaction energy (EIE), which is a part of the total elastic energy plays a key role in both ordering elastic interaction ordering (EIO) and spinodal decomposition. The present study gives a reasonable explanation to the historical dilemmas, "elastic energy paradox" and "atomic size factor paradox . By solving these confusing problems, the coexistence of ordering (EIO) and decomposition, which has been regarded as impossible by conventional theories. can be well understood. The mechanism is as follows: lowering of elastic energy demands EIO, and such an ordering provides a driving force for spinodal decomposition. Therefore, in alloys with large atomic size factor, spinodal decomposition is preceded and induced by ordering. Ordering and spinodal decomposition are thus closely related processes to each other 相似文献