In this work, the utilization of neural network in hybrid with first principle models for modelling and control of a batch polymerization process was investigated. Following the steps of the methodology, hybrid neural network (HNN) forward models and HNN inverse model of the process were first developed and then the performance of the model in direct inverse control strategy and internal model control (IMC) strategy was investigated. For comparison purposes, the performance of conventional neural network and PID controller in control was compared with the proposed HNN. The results show that HNN is able to control perfectly for both set points tracking and disturbance rejection studies. 相似文献
In response of swift heavy ion (100 MeV I9+) irradiation, the irradiation-induced disordering in nonstoichiometric pyrochlore composition (Nd1.8Zr2.2O7.1) was compared to that of stoichiometric composition Nd2Zr2O7. Both compositions were prepared through auto gel-combustion followed by sintering under the identical conditions. Systematic analysis of the compositions before and after irradiation was performed with X-ray diffraction (XRD), Raman spectroscopy, and plane-view high-resolution transmission electron microscopy (HRTEM) techniques. Irradiation caused pyrochlore to amorphous phase transformation was observed in both compositions except the slower rate of amorphization in Nd1.8Zr2.2O7.1. The amorphization was achieved as a consequence of isolated disordered track overlapping at higher ion fluence with the estimated track diameter 2.73 ± 0.05 and 3.46 ± 0.30 nm for Nd1.8Zr2.2O7.1 and Nd2Zr2O7, respectively, employing the framework of single-ion impact model to XRD results. HRTEM micrographs also revealed the less prevalence of irradiation-induced amorphization in Nd1.8Zr2.2O7.1 with the observed irradiation-induced modified track region composed of defect-rich pyrochlore structure, anion-deficient fluorite structure, and amorphous domains; with the diameter of 3.0 ± 1.0 nm and 5.0 ± 1.0 nm in Nd1.8Zr2.2O7.1 and Nd2Zr2O7, respectively. The preexisting anion-deficient fluorite structure in Nd1.8Zr2.2O7.1 helps in its epitaxial growth as recovered structure from melted ion track during irradiation-induced rapid cooling. 相似文献
The electrically conducting and partially porous graphite based adsorbent (called NyexTM 2000) was tested for its adsorption capacity and electrochemical regeneration ability for the removal of phenol from aqueous solution. Nyex? 2000 was tested in comparison with Nyex? 1000, which is currently being used for a number of industrial waste water treatment applications. Nyex? 1000 exhibited small adsorption capacity of 0.1 mg g?1 for phenol because of having small specific surface area of 1 m2 g?1. In contrast, Nyex? 2000 with specific surface area of 17 m2 g?1 delivered an adsorption capacity of 0.8 mg g?1, which was eight-fold higher than that of Nyex? 1000. Nyex? 2000 was successfully electrochemically regenerated by passing a current of 0.5 A, charge passed of 31 C g?1 for a treatment time of 45 minutes. These electrochemical parameters were comparable to Nyex? 1000 for which a current of 0.5 A, charge passed of 5 C g?1 for a treatment time of 20 minutes were applied for complete oxidation of adsorbed phenol. The comparatively high charge density was found to be required for Nyex? 2000, which is justified with its higher adsorption capacity. The FTIR results validated the mineralization of adsorbed phenol into CO2 and H2O except the formation of few by-products, which were in traces when compared with the concentration of phenol removed from aqueous solution. The electrical energy as required for electrochemical oxidation of phenol adsorbed onto Nyex? 1000 & 2000 was found to be 214 and 196 J mg?1, respectively. The comparatively low energy requirement for electrochemical oxidation using Nyex? 2000 is consistent with its higher bed electrical conductivity, which is twice that of Nyex? 1000. 相似文献
The aim of this study was to develop statistical models for the effect of binder concentration and curing temperature and time on the air permeability, tear strength, tensile strength, and crocking fastness of pigment‐printed nonwoven polypropylene fabric. The design and analysis of the experimental work were carried out using Minitab ® statistical software according to the Box–Behnken design of response surface methodology. Models were successfully developed. It was found that binder concentration improves the wet crocking and tensile strength while having a negative impact on all other responses. Increase in curing temperature and time affects the fabric tear strength negatively but has a positive effect on wet crocking fastness and fabric tensile strength. It could be concluded that pigment prints of good dry crocking fastness may be obtained on polypropylene nonwovens without deterioration in the mechanical strength and air permeability to a commercially unacceptable level. However, further work is required to improve the wet crocking fastness properties. 相似文献
This review describes recent progress made in the rapidly developing field of C H bond activation, in particular for syntheses of biaryls. The catalysts presented here provide convenient strategies for the direct arylation of arenes, via single or double C H bond activation, leading to inter‐, and intramolecular carbon‐carbon bond formation. The literature from mid‐2009 to December 2013 has been discussed.
This review describes the recent developments in the field of Suzuki–Miyaura cross‐coupling reaction, in particular with regard to ligand‐free catalysis. The catalysts outlined here allow convenient and green synthetic pathways specifically for the construction of C–C bonds. They enable the synthesis of biaryls by the coupling arylboronic acids with aryl halides. The literature reporting ligand‐free synthesis of biaryls from 2010 to May 2015 has been reviewed.
Preparation and electrochemical characterization of WO3‐infiltrated 0.48W–0.52Cu–ScYSZ (WCS) anode for solid oxide fuel cell are reported. The DC conductivity of a WO3 ceramic was 1,200 and 24 S cm–1 in reducing and oxidizing atmospheres, respectively, at 650 °C. WCS porous backbones in the form of symmetric cells were prepared by screen printing of WO3–CuO–ScYSZ ink and subsequent sintering at 1,300 °C for 1 h in 9% H2/N2. Analysis of the sintered backbone by X‐ray diffraction showed the metallic W and Cu phases. Precursor solutions of WO3 or CuO were infiltrated into porous WCS backbones to form the anode. The electrochemical performance of these anodes measured by impedance spectroscopy showed polarization resistances of 11 and 6.5 Ω cm2 for WO3 and CuO infiltrated anodes, respectively, at 600 °C in humidified hydrogen. Activation energy values of 86.8 and 96.5 kJ mol–1 were obtained for WO3 and CuO infiltrated WCS anodes, respectively. The microstructure of the tested anodes showed well‐dispersed sub‐micron particles of WO3 in the WCS backbone whereas CuO infiltration resulted in a dense microstructure. 相似文献