首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357406篇
  免费   30315篇
  国内免费   16376篇
电工技术   22533篇
技术理论   27篇
综合类   24224篇
化学工业   57258篇
金属工艺   20715篇
机械仪表   23507篇
建筑科学   29636篇
矿业工程   11170篇
能源动力   10007篇
轻工业   22638篇
水利工程   6534篇
石油天然气   21053篇
武器工业   2981篇
无线电   41790篇
一般工业技术   41308篇
冶金工业   16936篇
原子能技术   3988篇
自动化技术   47792篇
  2024年   1248篇
  2023年   5247篇
  2022年   9484篇
  2021年   13914篇
  2020年   10465篇
  2019年   8444篇
  2018年   9628篇
  2017年   10976篇
  2016年   9918篇
  2015年   13975篇
  2014年   17296篇
  2013年   21088篇
  2012年   23156篇
  2011年   24982篇
  2010年   22203篇
  2009年   21384篇
  2008年   21164篇
  2007年   20290篇
  2006年   20339篇
  2005年   17703篇
  2004年   11873篇
  2003年   10547篇
  2002年   10029篇
  2001年   9115篇
  2000年   8633篇
  1999年   9414篇
  1998年   7416篇
  1997年   6355篇
  1996年   5881篇
  1995年   4907篇
  1994年   4036篇
  1993年   2916篇
  1992年   2379篇
  1991年   1785篇
  1990年   1386篇
  1989年   1160篇
  1988年   905篇
  1987年   610篇
  1986年   444篇
  1985年   318篇
  1984年   206篇
  1983年   156篇
  1982年   184篇
  1981年   116篇
  1980年   105篇
  1979年   62篇
  1978年   39篇
  1977年   33篇
  1976年   51篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
Mobile Networks and Applications - Aiming at the problems of large data volume, long calculation time, and information feedback speed in traditional virtual augmented reality-based scenes, this...  相似文献   
32.
氢脆具有很强的微观组织敏感性,威胁着各类高强结构材料的安全服役.采用激光-电弧复合焊工艺对BS960E型高强钢进行焊接,并对接头在原位电化学充氢的条件下进行慢应变速率(10-5s-1)拉伸试验,结合微观组织和断裂特征进行分析并对接头的氢脆行为进行研究.结果 表明,焊接热循环所形成的富马氏体中的细晶区可以使接头表现出一定的氢脆敏感性,马氏体较大的氢扩散系数和较低的氢溶解度以及氢在晶界上的快速扩散是引起接头对氢脆敏感的主要原因,通过控制焊接工艺参数可抑制焊接热循环所引起的马氏体转变量,能够降低BS960E型高强钢激光-电弧复合焊接头的氢脆敏感性.  相似文献   
33.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
34.
35.
36.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
37.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
38.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
39.
Electric nanogenerators that directly convert the energy of moving drops into electrical signals require hydrophobic substrates with a high density of static electric charge that is stable in “harsh environments” created by continued exposure to potentially saline water. The recently proposed charge-trapping electric generators (CTEGs) that rely on stacked inorganic oxide–fluoropolymer (FP) composite electrets charged by homogeneous electrowetting-assisted charge injection (h-EWCI) seem to solve both problems, yet the reasons for this success have remained elusive. Here, systematic measurements at variable oxide and FP thickness, charging voltage, and charging time and thermal annealing up to 230 °C are reported, leading to a consistent model of the charging process. It is found to be controlled by an energy barrier at the water-FP interface, followed by trapping at the FP-oxide interface. Protection by the FP layer prevents charge densities up to −1.7 mC m−2 from degrading and the dielectric strength of SiO2 enables charge decay times up to 48 h at 230 °C, suggesting lifetimes against thermally activated discharging of thousands of years at room temperature. Combining high dielectric strength oxides and weaker FP top coatings with electrically controlled charging provides a new paradigm for developing ultrastable electrets for applications in energy harvesting and beyond.  相似文献   
40.
Jingdezhen is famous for its bluish white (Qingbai) porcelains of the Song Dynasty, and those decorated with iron spots are distinctive among them. Herein, iron spots on a bluish white porcelain were investigated using a series of microscopic and spectroscopic characterizations. We found the decreasing iron content from more than 8 wt% to about 2 wt% during the glaze color transition from rusty to brown and finally into green, which built a connection on the coloring mechanism of iron-rich crystallized glaze and celadon glaze. We identified the rare ε-Fe2O3, a promising magnetic material, in both the dark brown crystals and the triangular crystals in the rusty area, which is its first discovery among bluish white porcelains. Based on these findings, we discussed the coloring mechanism of iron-spot decoration along with the physical form of the iron oxide crystals, indicating the partially reducing atmosphere during firing process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号